Jump to content

User:Notsam1/sandboxagain

From Wikipedia, the free encyclopedia

In geometry, the order-7 pentagonal tiling is a regular tiling of the hyperbolic plane, which holds the Schläfli symbol of {5,7}, representing its dual, that is, the order-5 heptagonal tiling which holds the Schläfli symbol of {7,5}.

Order-7 pentagonal tiling
Notsam1/sandboxagain
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 57
Schläfli symbol {5,7}
Wythoff symbol 5 | 7 2
Coxeter diagram
Symmetry group [5,7], (*572)
Dual Order-5 heptagonal tiling
Properties Vertex-transitive, edge-transitive, face-transitive
[edit]
Finite Compact hyperbolic Paracompact

{5,3}

{5,4}

{5,5}

{5,6}

{5,7}

{5,8}...

{5,∞}

This tiling is topologically related as a part of sequence of regular tilings with pentagonal faces,[1] starting with the pentagonal filing, holding the Schläfli symbol {5,n}, and Coxeter diagram , whereby n is progressing towards infinity.

See also

[edit]

References

[edit]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
  • Weisstein, Eric (2007-08-07). "Making MathWorld". The Mathematica Journal. 10 (3). doi:10.3888/tmj.10.3-3. ISSN 1097-1610.
  • "Hyperbolic Planar Tesselations". www.plunk.org. Retrieved 2025-01-03.
  • Weisstein, Eric W. "Schläfli Symbol". MathWorld. Retrieved January 3, 2025.
  1. ^ "Hyperbolic Planar Tesselations". www.plunk.org. Retrieved 2025-01-03.
[edit]