User:Notsam1/sandboxagain
Appearance
In geometry, the order-7 pentagonal tiling is a regular tiling of the hyperbolic plane, which holds the Schläfli symbol of {5,7}, representing its dual, that is, the order-5 heptagonal tiling which holds the Schläfli symbol of {7,5}.
Order-7 pentagonal tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | 57 |
Schläfli symbol | {5,7} |
Wythoff symbol | 5 | 7 2 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [5,7], (*572) |
Dual | Order-5 heptagonal tiling |
Properties | Vertex-transitive, edge-transitive, face-transitive |
Related polyhedra and tiling
[edit]Finite | Compact hyperbolic | Paracompact | ||||
---|---|---|---|---|---|---|
![]() {5,3} ![]() ![]() ![]() ![]() ![]() |
![]() {5,4} ![]() ![]() ![]() ![]() ![]() |
![]() {5,5} ![]() ![]() ![]() ![]() ![]() |
![]() {5,6} ![]() ![]() ![]() ![]() ![]() |
![]() {5,7} ![]() ![]() ![]() ![]() ![]() |
![]() {5,8}... ![]() ![]() ![]() ![]() ![]() |
![]() {5,∞} ![]() ![]() ![]() ![]() ![]() |
This tiling is topologically related as a part of sequence of regular tilings with pentagonal faces,[1] starting with the pentagonal filing, holding the Schläfli symbol {5,n}, and Coxeter diagram , whereby n is progressing towards infinity.
See also
[edit]References
[edit]- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
- Weisstein, Eric (2007-08-07). "Making MathWorld". The Mathematica Journal. 10 (3). doi:10.3888/tmj.10.3-3. ISSN 1097-1610.
- "Hyperbolic Planar Tesselations". www.plunk.org. Retrieved 2025-01-03.
- Weisstein, Eric W. "Schläfli Symbol". MathWorld. Retrieved January 3, 2025.
- ^ "Hyperbolic Planar Tesselations". www.plunk.org. Retrieved 2025-01-03.