Truncated tetraheptagonal tiling
Appearance
	
	
| Truncated tetraheptagonal tiling | |
|---|---|
Poincaré disk model of the hyperbolic plane  | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | 4.8.14 | 
| Schläfli symbol | tr{7,4} or | 
| Wythoff symbol | 2 7 4 | | 
| Coxeter diagram | |
| Symmetry group | [7,4], (*742) | 
| Dual | Order-4-7 kisrhombille tiling | 
| Properties | Vertex-transitive | 
In geometry, the truncated tetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of tr{4,7}.
Images
[edit]Poincaré disk projection, centered on 14-gon:
Symmetry
[edit]





The dual to this tiling represents the fundamental domains of [7,4] (*742) symmetry. There are three small index subgroups constructed from [7,4] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.
| Small index subgroups of [7,4] (*742) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Index | 1 | 2 | 14 | ||||||||
| Diagram | |||||||||||
| Coxeter (orbifold)  | 
[7,4] =  (*742)  | 
[7,4,1+] =  (*772)  | 
[7+,4] =  (7*2)  | 
[7*,4] =  (*2222222)  | |||||||
| Index | 2 | 4 | 28 | ||||||||
| Diagram | |||||||||||
| Coxeter (orbifold)  | 
[7,4]+ =  (742)  | 
[7+,4]+ =  (772)  | 
[7*,4]+ =  (2222222)  | ||||||||
Related polyhedra and tiling
[edit]| Uniform heptagonal/square tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [7,4], (*742) | [7,4]+, (742) | [7+,4], (7*2) | [7,4,1+], (*772) | ||||||||
| {7,4} | t{7,4} | r{7,4} | 2t{7,4}=t{4,7} | 2r{7,4}={4,7} | rr{7,4} | tr{7,4} | sr{7,4} | s{7,4} | h{4,7} | ||
| Uniform duals | |||||||||||
| V74 | V4.14.14 | V4.7.4.7 | V7.8.8 | V47 | V4.4.7.4 | V4.8.14 | V3.3.4.3.7 | V3.3.7.3.7 | V77 | ||
| *n42 symmetry mutation of omnitruncated tilings: 4.8.2n | ||||||||
|---|---|---|---|---|---|---|---|---|
| Symmetry *n42 [n,4]  | 
Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||
| *242 [2,4]  | 
*342 [3,4]  | 
*442 [4,4]  | 
*542 [5,4]  | 
*642 [6,4]  | 
*742 [7,4]  | 
*842 [8,4]...  | 
*∞42 [∞,4]  | |
| Omnitruncated figure  | 
4.8.4  | 
4.8.6  | 
4.8.8  | 
4.8.10  | 
4.8.12  | 
4.8.14  | 
4.8.16  | 
4.8.∞  | 
| Omnitruncated duals  | 
V4.8.4  | 
V4.8.6  | 
V4.8.8  | 
V4.8.10  | 
V4.8.12  | 
V4.8.14  | 
V4.8.16  | 
V4.8.∞  | 
| *nn2 symmetry mutations of omnitruncated tilings: 4.2n.2n | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry *nn2 [n,n]  | 
Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||||||||
| *222 [2,2]  | 
*332 [3,3]  | 
*442 [4,4]  | 
*552 [5,5]  | 
*662 [6,6]  | 
*772 [7,7]  | 
*882 [8,8]...  | 
*∞∞2 [∞,∞]  | |||||||
| Figure | ||||||||||||||
| Config. | 4.4.4 | 4.6.6 | 4.8.8 | 4.10.10 | 4.12.12 | 4.14.14 | 4.16.16 | 4.∞.∞ | ||||||
| Dual | ||||||||||||||
| Config. | V4.4.4 | V4.6.6 | V4.8.8 | V4.10.10 | V4.12.12 | V4.14.14 | V4.16.16 | V4.∞.∞ | ||||||
References
[edit]- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
 - "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
 
See also
[edit]Wikimedia Commons has media related to Uniform tiling 4-8-14.
External links
[edit]- Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
 - Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
 - Hyperbolic and Spherical Tiling Gallery
 - KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
 - Hyperbolic Planar Tessellations, Don Hatch