Truncated order-3 apeirogonal tiling
Appearance
	
	
| Truncated order-3 apeirogonal tiling | |
|---|---|
Poincaré disk model of the hyperbolic plane  | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | 3.∞.∞ | 
| Schläfli symbol | t{∞,3} | 
| Wythoff symbol | 2 3 | ∞ | 
| Coxeter diagram | |
| Symmetry group | [∞,3], (*∞32) | 
| Dual | Infinite-order triakis triangular tiling | 
| Properties | Vertex-transitive | 
In geometry, the truncated order-3 apeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of t{∞,3}.
Dual tiling
[edit]The dual tiling, the infinite-order triakis triangular tiling, has face configuration V3.∞.∞.
Related polyhedra and tiling
[edit]This hyperbolic tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and [n,3] Coxeter group symmetry.
| *n32 symmetry mutation of truncated tilings: t{n,3} | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry *n32 [n,3]  | 
Spherical | Euclid. | Compact hyperb. | Paraco. | Noncompact hyperbolic | ||||||
| *232 [2,3]  | 
*332 [3,3]  | 
*432 [4,3]  | 
*532 [5,3]  | 
*632 [6,3]  | 
*732 [7,3]  | 
*832 [8,3]...  | 
*∞32 [∞,3]  | 
[12i,3] | [9i,3] | [6i,3] | |
| Truncated figures  | 
|||||||||||
| Symbol | t{2,3} | t{3,3} | t{4,3} | t{5,3} | t{6,3} | t{7,3} | t{8,3} | t{∞,3} | t{12i,3} | t{9i,3} | t{6i,3} | 
| Triakis figures  | 
|||||||||||
| Config. | V3.4.4 | V3.6.6 | V3.8.8 | V3.10.10 | V3.12.12 | V3.14.14 | V3.16.16 | V3.∞.∞ | |||
| Paracompact uniform tilings in [∞,3] family | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [∞,3], (*∞32) | [∞,3]+ (∞32)  | 
[1+,∞,3] (*∞33)  | 
[∞,3+] (3*∞)  | |||||||
=  | 
=  | 
=  | 
=  | |||||||
| {∞,3} | t{∞,3} | r{∞,3} | t{3,∞} | {3,∞} | rr{∞,3} | tr{∞,3} | sr{∞,3} | h{∞,3} | h2{∞,3} | s{3,∞} | 
| Uniform duals | ||||||||||
| V∞3 | V3.∞.∞ | V(3.∞)2 | V6.6.∞ | V3∞ | V4.3.4.∞ | V4.6.∞ | V3.3.3.3.∞ | V(3.∞)3 | V3.3.3.3.3.∞ | |
See also
[edit]Wikimedia Commons has media related to Uniform tiling 3-i-i.
References
[edit]- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
 - "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.