Order-5 apeirogonal tiling
Appearance
	
	
| Order-5 apeirogonal tiling | |
|---|---|
Poincaré disk model of the hyperbolic plane  | |
| Type | Hyperbolic regular tiling | 
| Vertex configuration | ∞5 | 
| Schläfli symbol | {∞,5} | 
| Wythoff symbol | 5 | ∞ 2 | 
| Coxeter diagram | |
| Symmetry group | [∞,5], (*∞52) | 
| Dual | Infinite-order pentagonal tiling | 
| Properties | Vertex-transitive, edge-transitive, face-transitive edge-transitive | 
In geometry, the order-5 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,5}.
Symmetry
[edit]The dual to this tiling represents the fundamental domains of [∞,5*] symmetry, orbifold notation *∞∞∞∞∞ symmetry, a pentagonal domain with five ideal vertices.
The order-5 apeirogonal tiling can be uniformly colored with 5 colored apeirogons around each vertex, and coxeter diagram: ![]()
![]()
![]()
![]()
![]()
, except ultraparallel branches on the diagonals.
Related polyhedra and tiling
[edit]This tiling is also topologically related as a part of sequence of regular polyhedra and tilings with five faces per vertex, starting with the icosahedron, with Schläfli symbol {n,5}, and Coxeter diagram ![]()
![]()
![]()
![]()
, with n progressing to infinity.
| Spherical | Hyperbolic tilings | |||||||
|---|---|---|---|---|---|---|---|---|
{2,5}  | 
{3,5}  | 
{4,5}  | 
{5,5}  | 
{6,5}  | 
{7,5}  | 
{8,5}  | 
... | {∞,5}  | 
| Paracompact uniform apeirogonal/pentagonal tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [∞,5], (*∞52) | [∞,5]+ (∞52)  | 
[1+,∞,5] (*∞55)  | 
[∞,5+] (5*∞)  | ||||||||
| {∞,5} | t{∞,5} | r{∞,5} | 2t{∞,5}=t{5,∞} | 2r{∞,5}={5,∞} | rr{∞,5} | tr{∞,5} | sr{∞,5} | h{∞,5} | h2{∞,5} | s{5,∞} | |
| Uniform duals | |||||||||||
| V∞5 | V5.∞.∞ | V5.∞.5.∞ | V∞.10.10 | V5∞ | V4.5.4.∞ | V4.10.∞ | V3.3.5.3.∞ | V(∞.5)5 | V3.5.3.5.3.∞ | ||
See also
[edit]Wikimedia Commons has media related to Order-5 apeirogonal tiling.
References
[edit]- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
 - "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.