Jump to content

Snub pentahexagonal tiling

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Snub pentahexagonal tiling
Snub pentahexagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.5.3.6
Schläfli symbol sr{6,5} or
Wythoff symbol | 6 5 2
Coxeter diagram
Symmetry group [6,5]+, (652)
Dual Order-6-5 floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the snub pentahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{6,5}.

Images

Drawn in chiral pairs, with edges missing between black triangles:

Uniform hexagonal/pentagonal tilings
Symmetry: [6,5], (*652) [6,5]+, (652) [6,5+], (5*3) [1+,6,5], (*553)
{6,5} t{6,5} r{6,5} 2t{6,5}=t{5,6} 2r{6,5}={5,6} rr{6,5} tr{6,5} sr{6,5} s{5,6} h{6,5}
Uniform duals
V65 V5.12.12 V5.6.5.6 V6.10.10 V56 V4.5.4.6 V4.10.12 V3.3.5.3.6 V3.3.3.5.3.5 V(3.5)5

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also