Jump to content

Snub order-8 triangular tiling

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Snub order-8 triangular tiling
Snub order-8 triangular tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.3.3.3.4
Schläfli symbol s{3,8}
s(4,3,3)
Wythoff symbol | 4 3 3
Coxeter diagram
Symmetry group [8,3+], (3*4)
[(4,3,3)]+, (433)
Dual Order-4-3-3 snub dual tiling
Properties Vertex-transitive

In geometry, the snub tritetratrigonal tiling or snub order-8 triangular tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbols of s{(3,4,3)} and s{3,8}.

Images

Drawn in chiral pairs:

Symmetry

The alternated construction from the truncated order-8 triangular tiling has 2 colors of triangles and achiral symmetry. It has Schläfli symbol of s{3,8}.

Uniform (4,3,3) tilings
Symmetry: [(4,3,3)], (*433) [(4,3,3)]+, (433)
h{8,3}
t0(4,3,3)
r{3,8}1/2
t0,1(4,3,3)
h{8,3}
t1(4,3,3)
h2{8,3}
t1,2(4,3,3)
{3,8}1/2
t2(4,3,3)
h2{8,3}
t0,2(4,3,3)
t{3,8}1/2
t0,1,2(4,3,3)
s{3,8}1/2
s(4,3,3)
Uniform duals
V(3.4)3 V3.8.3.8 V(3.4)3 V3.6.4.6 V(3.3)4 V3.6.4.6 V6.6.8 V3.3.3.3.3.4
Uniform octagonal/triangular tilings
Symmetry: [8,3], (*832) [8,3]+
(832)
[1+,8,3]
(*443)
[8,3+]
(3*4)
{8,3} t{8,3} r{8,3} t{3,8} {3,8} rr{8,3}
s2{3,8}
tr{8,3} sr{8,3} h{8,3} h2{8,3} s{3,8}




or

or





Uniform duals
V83 V3.16.16 V3.8.3.8 V6.6.8 V38 V3.4.8.4 V4.6.16 V34.8 V(3.4)3 V8.6.6 V35.4

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also