Jump to content

Order-6 hexagonal tiling

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Order-6 hexagonal tiling
Order-6 hexagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 66
Schläfli symbol {6,6}
Wythoff symbol 6 | 6 2
Coxeter diagram
Symmetry group [6,6], (*662)
Dual self dual
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the order-6 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,6} and is self-dual.

Symmetry

This tiling represents a hyperbolic kaleidoscope of 6 mirrors defining a regular hexagon fundamental domain. This symmetry by orbifold notation is called *333333 with 6 order-3 mirror intersections. In Coxeter notation can be represented as [6*,6], removing two of three mirrors (passing through the hexagon center) in the [6,6] symmetry.

The even/odd fundamental domains of this kaleidoscope can be seen in the alternating colorings of the tiling:

This tiling is topologically related as a part of sequence of regular tilings with order-6 vertices with Schläfli symbol {n,6}, and Coxeter diagram , progressing to infinity.

Regular tilings {n,6}
Spherical Euclidean Hyperbolic tilings

{2,6}

{3,6}

{4,6}

{5,6}

{6,6}

{7,6}

{8,6}
...
{∞,6}

This tiling is topologically related as a part of sequence of regular tilings with hexagonal faces, starting with the hexagonal tiling, with Schläfli symbol {6,n}, and Coxeter diagram , progressing to infinity.

*n62 symmetry mutation of regular tilings: {6,n}
Spherical Euclidean Hyperbolic tilings

{6,2}

{6,3}

{6,4}

{6,5}

{6,6}

{6,7}

{6,8}
...
{6,∞}
Uniform hexahexagonal tilings
Symmetry: [6,6], (*662)
=
=
=
=
=
=
=
=
=
=
=
=
=
=
{6,6}
= h{4,6}
t{6,6}
= h2{4,6}
r{6,6}
{6,4}
t{6,6}
= h2{4,6}
{6,6}
= h{4,6}
rr{6,6}
r{6,4}
tr{6,6}
t{6,4}
Uniform duals
V66 V6.12.12 V6.6.6.6 V6.12.12 V66 V4.6.4.6 V4.12.12
Alternations
[1+,6,6]
(*663)
[6+,6]
(6*3)
[6,1+,6]
(*3232)
[6,6+]
(6*3)
[6,6,1+]
(*663)
[(6,6,2+)]
(2*33)
[6,6]+
(662)
= = =
h{6,6} s{6,6} hr{6,6} s{6,6} h{6,6} hrr{6,6} sr{6,6}
Similar H2 tilings in *3232 symmetry
Coxeter
diagrams
Vertex
figure
66 (3.4.3.4)2 3.4.6.6.4 6.4.6.4
Image
Dual

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also