Olalááá ...
- Я знаю, как управлять Вселенной. И скажите - зачем же мне бежать за миллионом?!
- I know how to control the universe. So tell me, why should I run for a million?!
- Vím, jak ovládat vesmír. Tak mi řekněte, proč bych se měl hnát za milionem?!
Grigorij Perelman, Komsomolskaja Pravda [1]
Značení matic, které je rozumné používat (v článcích, které jsou primárně o maticích)
matice (ne tučné);
transponovaná matice;
herminovsky sdružená matice (
se plete s pseudoinverzí);
inverzní matice;
Moore-Penroseova pseudoinverze (možno též
, první mi příjde hezčí).




![{\displaystyle {\sqrt {2}}^{\sqrt {2}}=(2^{\frac {1}{2}})^{\sqrt {2}}=2^{{\frac {1}{2}}\cdot {\sqrt {2}}}=2^{\frac {\sqrt {2}}{2}}=2^{\frac {1}{\sqrt {2}}}={\sqrt[{\sqrt {2}}]{2}}}](/media/api/rest_v1/media/math/render/svg/f58b9703d4dc94b48c37041c262a600fcfb54f44)
![{\displaystyle {\sqrt {{\sqrt[{3}]{4\,}}-1\,}}+{\sqrt {{\sqrt[{3}]{16\,}}-{\sqrt[{3}]{4\,}}\,}}={\sqrt {3}}}](/media/api/rest_v1/media/math/render/svg/ecdf1b370db0cfd778bab07be3268a765fc682bf)
![{\displaystyle {\begin{array}{rcl}\log _{a}(x)+\log _{a}(y)\!\!&\!\!=\!\!&\!\!\log _{a}(x\cdot y)\\[2mm]\log _{a}(x)-\log _{a}(y)\!\!&\!\!=\!\!&\!\!\log _{a}\!{\Big (}{\frac {\displaystyle x}{\displaystyle y}}{\Big )}\\[2mm]s\cdot \log _{a}(x)\!\!&\!\!=\!\!&\!\!\log _{a}(x^{s})\\[2mm]-\log _{a}(x)\!\!&\!\!=\!\!&\!\!\log _{a}\!{\Big (}{\frac {\displaystyle 1}{\displaystyle x}}{\Big )}\\[2mm]\end{array}}\qquad \qquad \qquad {\begin{array}{rcl}\log _{a}(s)\cdot \log _{s}(x)\!\!&\!\!=\!\!&\!\!\log _{a}(x)\\[2mm]\log _{a}(x)\cdot \log _{x}(a)\!\!&\!\!=\!\!&\!\!1\\[2mm]x\!\!&\!\!=\!\!&\!\!a^{\displaystyle \,\log _{a}(x)}\\[2mm]x^{\displaystyle \,\log _{a}(y)}\!\!&\!\!=\!\!&\!\!y^{\displaystyle \,\log _{a}(x)}\\[2mm]\end{array}}\qquad \qquad \qquad {\begin{array}{rlc}\log _{a}(x)+\log _{b}(x)=\log _{c}(x),\;\;{\text{kde}}\;\;{\frac {\displaystyle 1}{\displaystyle \log _{s}(c)}}={\frac {\displaystyle 1}{\displaystyle \log _{s}(a)}}+{\frac {\displaystyle 1}{\displaystyle \log _{s}(b)}}\end{array}}}](/media/api/rest_v1/media/math/render/svg/234c34ef01c8597b06928237f93255c399902628)
![{\displaystyle {\begin{array}{cc}\left[{\begin{array}{ccc}1&1&1\\1-{\sqrt {2\,}}&{\sqrt {2\,}}+1&1\\{\sqrt {2\,}}-1&1-{\sqrt {2\,}}&1\\\end{array}}\right]&\left[{\begin{array}{ccc}1&-3&-3\\1-{\sqrt {2\,}}&{\sqrt {2\,}}-3&-3\\{\sqrt {2\,}}-1&1-{\sqrt {2\,}}&1\\\end{array}}\right]\\\left[{\begin{array}{ccc}1&1&1\\{\sqrt {2\,}}+1&1-{\sqrt {2\,}}&1\\-{\sqrt {2\,}}-1&{\sqrt {2\,}}+1&1\\\end{array}}\right]&\left[{\begin{array}{ccc}1&-3&-3\\{\sqrt {2\,}}+1&-{\sqrt {2\,}}-3&-3\\-{\sqrt {2\,}}-1&{\sqrt {2\,}}+1&1\\\end{array}}\right]\\\left[{\begin{array}{ccc}-1&3&3\\-{\sqrt {2\,}}-1&{\sqrt {2\,}}+3&3\\{\sqrt {2\,}}+1&-{\sqrt {2\,}}-1&-1\\\end{array}}\right]&\left[{\begin{array}{ccc}-1&-1&-1\\-{\sqrt {2\,}}-1&{\sqrt {2\,}}-1&-1\\{\sqrt {2\,}}+1&-{\sqrt {2\,}}-1&-1\\\end{array}}\right]\\\left[{\begin{array}{ccc}-1&3&3\\{\sqrt {2\,}}-1&3-{\sqrt {2\,}}&3\\1-{\sqrt {2\,}}&{\sqrt {2\,}}-1&-1\\\end{array}}\right]&\left[{\begin{array}{ccc}-1&-1&-1\\{\sqrt {2\,}}-1&-{\sqrt {2\,}}-1&-1\\1-{\sqrt {2\,}}&{\sqrt {2\,}}-1&-1\\\end{array}}\right]\end{array}}}](/media/api/rest_v1/media/math/render/svg/0a9195a2a7e578b4c3f39541e02703837a041957)