Olalááá ...
- Я знаю, как управлять Вселенной. И скажите - зачем же мне бежать за миллионом?!
- I know how to control the universe. So tell me, why should I run for a million?!
- Vím, jak ovládat vesmír. Tak mi řekněte, proč bych se měl hnát za milionem?!
Grigorij Perelman, Komsomolskaja Pravda [1]
Značení matic, které je rozumné používat (v článcích, které jsou primárně o maticích)
matice (ne tučné);
transponovaná matice;
herminovsky sdružená matice (
se plete s pseudoinverzí);
inverzní matice;
Moore-Penroseova pseudoinverze (možno též
, první mi příjde hezčí).
Katedra matematiky TUL — Nadřazený celek, název katedry, vedoucí katedry |
|
|
Katedra matematiky TUL — Název katedry (modře), vedoucí katedry (červeně) a nadřazený celek (zeleně) |
|
|




![{\displaystyle {\sqrt {2}}^{\sqrt {2}}=(2^{\frac {1}{2}})^{\sqrt {2}}=2^{{\frac {1}{2}}\cdot {\sqrt {2}}}=2^{\frac {\sqrt {2}}{2}}=2^{\frac {1}{\sqrt {2}}}={\sqrt[{\sqrt {2}}]{2}}}](/media/api/rest_v1/media/math/render/svg/f58b9703d4dc94b48c37041c262a600fcfb54f44)
![{\displaystyle {\sqrt {{\sqrt[{3}]{4\,}}-1\,}}+{\sqrt {{\sqrt[{3}]{16\,}}-{\sqrt[{3}]{4\,}}\,}}={\sqrt {3}}}](/media/api/rest_v1/media/math/render/svg/ecdf1b370db0cfd778bab07be3268a765fc682bf)
![{\displaystyle {\begin{array}{rcl}\log _{a}(x)+\log _{a}(y)\!\!&\!\!=\!\!&\!\!\log _{a}(x\cdot y)\\[2mm]\log _{a}(x)-\log _{a}(y)\!\!&\!\!=\!\!&\!\!\log _{a}\!{\Big (}{\frac {\displaystyle x}{\displaystyle y}}{\Big )}\\[2mm]s\cdot \log _{a}(x)\!\!&\!\!=\!\!&\!\!\log _{a}(x^{s})\\[2mm]-\log _{a}(x)\!\!&\!\!=\!\!&\!\!\log _{a}\!{\Big (}{\frac {\displaystyle 1}{\displaystyle x}}{\Big )}\\[2mm]\end{array}}\qquad \qquad \qquad {\begin{array}{rcl}\log _{a}(s)\cdot \log _{s}(x)\!\!&\!\!=\!\!&\!\!\log _{a}(x)\\[2mm]\log _{a}(x)\cdot \log _{x}(a)\!\!&\!\!=\!\!&\!\!1\\[2mm]x\!\!&\!\!=\!\!&\!\!a^{\displaystyle \,\log _{a}(x)}\\[2mm]x^{\displaystyle \,\log _{a}(y)}\!\!&\!\!=\!\!&\!\!y^{\displaystyle \,\log _{a}(x)}\\[2mm]\end{array}}\qquad \qquad \qquad {\begin{array}{rlc}\log _{a}(x)+\log _{b}(x)=\log _{c}(x),\;\;{\text{kde}}\;\;{\frac {\displaystyle 1}{\displaystyle \log _{s}(c)}}={\frac {\displaystyle 1}{\displaystyle \log _{s}(a)}}+{\frac {\displaystyle 1}{\displaystyle \log _{s}(b)}}\end{array}}}](/media/api/rest_v1/media/math/render/svg/234c34ef01c8597b06928237f93255c399902628)
![{\displaystyle {\begin{array}{cc}\left[{\begin{array}{ccc}1&1&1\\1-{\sqrt {2\,}}&{\sqrt {2\,}}+1&1\\{\sqrt {2\,}}-1&1-{\sqrt {2\,}}&1\\\end{array}}\right]&\left[{\begin{array}{ccc}1&-3&-3\\1-{\sqrt {2\,}}&{\sqrt {2\,}}-3&-3\\{\sqrt {2\,}}-1&1-{\sqrt {2\,}}&1\\\end{array}}\right]\\\left[{\begin{array}{ccc}1&1&1\\{\sqrt {2\,}}+1&1-{\sqrt {2\,}}&1\\-{\sqrt {2\,}}-1&{\sqrt {2\,}}+1&1\\\end{array}}\right]&\left[{\begin{array}{ccc}1&-3&-3\\{\sqrt {2\,}}+1&-{\sqrt {2\,}}-3&-3\\-{\sqrt {2\,}}-1&{\sqrt {2\,}}+1&1\\\end{array}}\right]\\\left[{\begin{array}{ccc}-1&3&3\\-{\sqrt {2\,}}-1&{\sqrt {2\,}}+3&3\\{\sqrt {2\,}}+1&-{\sqrt {2\,}}-1&-1\\\end{array}}\right]&\left[{\begin{array}{ccc}-1&-1&-1\\-{\sqrt {2\,}}-1&{\sqrt {2\,}}-1&-1\\{\sqrt {2\,}}+1&-{\sqrt {2\,}}-1&-1\\\end{array}}\right]\\\left[{\begin{array}{ccc}-1&3&3\\{\sqrt {2\,}}-1&3-{\sqrt {2\,}}&3\\1-{\sqrt {2\,}}&{\sqrt {2\,}}-1&-1\\\end{array}}\right]&\left[{\begin{array}{ccc}-1&-1&-1\\{\sqrt {2\,}}-1&-{\sqrt {2\,}}-1&-1\\1-{\sqrt {2\,}}&{\sqrt {2\,}}-1&-1\\\end{array}}\right]\end{array}}}](/media/api/rest_v1/media/math/render/svg/0a9195a2a7e578b4c3f39541e02703837a041957)
Consider following bijection and injection
Notable properties
Consider a general vector field
over
with Jacobian derivative
Consider a function
on
with complex derivative (whatever it is)
Linking both toghether gives
Let
![{\displaystyle M_{n}=\left[{\begin{array}{ccccccc}m_{1}^{(n)}&m_{2}^{(n)}&m_{3}^{(n)}&\cdots &m_{n-2}^{(n)}&m_{n-1}^{(n)}&m_{n}^{(n)}\\\end{array}}\right]=\left[{\begin{array}{ccccccc}1&2&3&\cdots &n\!\!-\!\!2&n\!\!-\!\!1&n\\2&2&3&\cdots &n\!\!-\!\!2&n\!\!-\!\!1&n\\3&3&3&\cdots &n\!\!-\!\!2&n\!\!-\!\!1&n\\\vdots &\vdots &\vdots &\ddots &\vdots &\vdots &\vdots \\n\!\!-\!\!2&n\!\!-\!\!2&n\!\!-\!\!2&\cdots &n\!\!-\!\!2&n\!\!-\!\!1&n\\n\!\!-\!\!1&n\!\!-\!\!1&n\!\!-\!\!1&\cdots &n\!\!-\!\!1&n\!\!-\!\!1&n\\n&n&n&\cdots &n&n&n\\\end{array}}\right]}](/media/api/rest_v1/media/math/render/svg/334b4ebb6531ccbdb084addd911e5383859eb613)
Denote
![{\displaystyle {\widetilde {M}}_{n}=\left[{\begin{array}{c|c|c}m_{0}^{(n)}&M_{n}&m_{n+1}^{(n)}\\\end{array}}\right]=\left[{\begin{array}{c|ccccccc|c}1&1&2&3&\cdots &n\!\!-\!\!2&n\!\!-\!\!1&n&n\!\!+\!\!1\\2&2&2&3&\cdots &n\!\!-\!\!2&n\!\!-\!\!1&n&n\!\!+\!\!1\\3&3&3&3&\cdots &n\!\!-\!\!2&n\!\!-\!\!1&n&n\!\!+\!\!1\\\vdots &\vdots &\vdots &\vdots &\ddots &\vdots &\vdots &\vdots &\vdots \\n\!\!-\!\!2&n\!\!-\!\!2&n\!\!-\!\!2&n\!\!-\!\!2&\cdots &n\!\!-\!\!2&n\!\!-\!\!1&n&n\!\!+\!\!1\\n\!\!-\!\!1&n\!\!-\!\!1&n\!\!-\!\!1&n\!\!-\!\!1&\cdots &n\!\!-\!\!1&n\!\!-\!\!1&n&n\!\!+\!\!1\\n&n&n&n&\cdots &n&n&n&n\!\!+\!\!1\\\end{array}}\right]}](/media/api/rest_v1/media/math/render/svg/3f3b3cc7e9373abc6114857c5772724e0812c6a3)
Note that

For
![{\displaystyle m_{j-1}^{(n)}+m_{j+1}^{(n)}=2\cdot m_{j}^{(n)}+e_{j}^{(n)}\qquad \Longleftrightarrow \qquad \left[{\begin{array}{ccc}m_{j-1}^{(n)}&m_{j}^{(n)}&m_{j+1}^{(n)}\\\end{array}}\right]\left[{\begin{array}{r}1\\-2\\1\end{array}}\right]=e_{j}^{(n)}}](/media/api/rest_v1/media/math/render/svg/2d01f4ef9bc23fb4509f0bb96b1d40160d5745f7)
where
denotes the
-th column of identity matrix of order
. Thus
![{\displaystyle \left[{\begin{array}{c|ccccccc|c}m_{0}^{(n)}&m_{1}^{(n)}&m_{2}^{(n)}&m_{3}^{(n)}&\cdots &m_{n-2}^{(n)}&m_{n-1}^{(n)}&m_{n}^{(n)}&m_{n+1}^{(n)}\\\end{array}}\right]\left[{\begin{array}{rrrrrrr}1\\\hline -2&1\\1&-2&1\\&1&-2&1\\&&\ddots &\ddots &\ddots \\&&&1&-2&1\\&&&&1&-2&1\\&&&&&1&-2\\\hline &&&&&&1\\\end{array}}\right]=\left[{\begin{array}{ccccccc}e_{1}^{(n)}&e_{2}^{(n)}&e_{3}^{(n)}&\cdots &e_{n-2}^{(n)}&e_{n-1}^{(n)}&e_{n}^{(n)}\\\end{array}}\right]=I_{n}}](/media/api/rest_v1/media/math/render/svg/c2950dd15332841a615839eb65a5a29225692213)
Now for
and
![{\displaystyle {\begin{array}{rcl}j=1\,:\qquad m_{j-1}^{(n)}+m_{j+1}^{(n)}&=&2\cdot m_{j}^{(n)}+e_{j}^{(n)}\,,\qquad m_{0}^{(n)}=m_{1}^{(n)}\\[2mm]m_{0}^{(n)}+m_{2}^{(n)}&=&2\cdot m_{1}^{(n)}+e_{1}^{(n)}\\m_{1}^{(n)}+m_{2}^{(n)}&=&2\cdot m_{1}^{(n)}+e_{1}^{(n)}\\-m_{1}^{(n)}+m_{2}^{(n)}&=&e_{1}^{(n)}\\\left[{\begin{array}{cc}m_{1}^{(n)}&m_{2}^{(n)}\\\end{array}}\right]\left[{\begin{array}{r}-1\\1\end{array}}\right]&=&e_{1}^{(n)}\\\end{array}}\qquad \qquad \qquad \qquad {\begin{array}{rcl}j=n\,:\qquad m_{j-1}^{(n)}+m_{j+1}^{(n)}&=&2\cdot m_{j}^{(n)}+e_{j}^{(n)}\,,\qquad (n+1)\cdot m_{n}^{(n)}=n\cdot m_{n+1}^{(n)}\\[2mm]m_{n-1}^{(n)}+m_{n+1}^{(n)}&=&2\cdot m_{n}^{(n)}+e_{n}^{(n)}\\m_{n-1}^{(n)}+{\frac {n+1}{n}}\,m_{n}^{(n)}&=&2\cdot m_{n}^{(n)}+e_{n}^{(n)}\\m_{n-1}^{(n)}+{\frac {1-n}{n}}\,m_{2}^{(n)}&=&e_{n}^{(n)}\\\left[{\begin{array}{cc}m_{n-1}^{(n)}&m_{n}^{(n)}\\\end{array}}\right]\left[{\begin{array}{c}1\\{\frac {1-n}{n}}\end{array}}\right]&=&e_{n}^{(n)}\\\end{array}}}](/media/api/rest_v1/media/math/render/svg/793b5e11dac5d8fea0b192604eef436e89efeb31)
Altogether
![{\displaystyle M_{n}^{-1}=\left[{\begin{array}{rrrrrrc}-1&1\\1&-2&1\\&1&-2&1\\&&\ddots &\ddots &\ddots \\&&&1&-2&1\\&&&&1&-2&1\\&&&&&1&{\frac {1-n}{n}}\\\end{array}}\right]}](/media/api/rest_v1/media/math/render/svg/81e5facdc96792770210afebbfc640808376aa51)