From Wikipedia, the free encyclopedia
Maps between structures [ edit ]
Fix a language,
L
{\displaystyle L}
and let
M
{\displaystyle M}
and
N
{\displaystyle N}
be two
L
{\displaystyle L}
-structures. For symbols from the language, such as a constant
c
{\displaystyle c}
, let
c
M
{\displaystyle c^{M}}
be the interpretation of
c
{\displaystyle c}
in
M
{\displaystyle M}
and similarly for the other classes of symbols (functions and relations).
A map
j
{\displaystyle j}
from the domain of
M
{\displaystyle M}
to the domain of
N
{\displaystyle N}
is a homomorphism if the following conditions hold:
for every constant symbol
c
∈
L
{\displaystyle c\in L}
, we have
j
(
c
M
)
=
c
N
{\displaystyle j(c^{M})=c^{N}}
.
for every n-ary function symbol
f
∈
L
{\displaystyle f\in L}
and
a
1
,
…
,
a
n
∈
M
n
{\displaystyle a_{1},\ldots ,a_{n}\in M^{n}}
, we have
j
(
f
M
(
a
1
,
…
,
a
n
)
)
=
f
N
(
j
(
a
1
)
,
…
,
j
(
a
n
)
)
{\displaystyle j(f^{M}(a_{1},\ldots ,a_{n}))=f^{N}(j(a_{1}),\ldots ,j(a_{n}))}
,
for every n-ary relation symbol
R
∈
L
{\displaystyle R\in L}
and
a
1
,
…
,
a
n
∈
M
n
,
{\displaystyle a_{1},\ldots ,a_{n}\in M^{n},}
we have
M
⊨
R
(
a
1
,
…
,
a
n
)
⇒
N
⊨
R
(
j
(
a
1
)
,
…
,
j
(
a
n
)
)
{\displaystyle M\models R(a_{1},\ldots ,a_{n})\Rightarrow N\models R(j(a_{1}),\ldots ,j(a_{n}))}
,
If in addition, the map
j
{\displaystyle j}
is injective and the third condition is modified to read:
for every n-ary relation symbol
R
∈
L
{\displaystyle R\in L}
and
a
1
,
…
,
a
n
∈
M
n
,
{\displaystyle a_{1},\ldots ,a_{n}\in M^{n},}
we have
M
⊨
R
(
a
1
,
…
,
a
n
)
⇔
N
⊨
R
(
j
(
a
1
)
,
…
,
j
(
a
n
)
)
,
{\displaystyle M\models R(a_{1},\ldots ,a_{n})\Leftrightarrow N\models R(j(a_{1}),\ldots ,j(a_{n})),}
then the map
j
{\displaystyle j}
is an embedding (of
M
{\displaystyle M}
into
N
{\displaystyle N}
).
Equivalent definitions of homomorphism and embedding are:
If for all atomic formulas
ϕ
{\displaystyle \phi }
and sequences of elements from
M
{\displaystyle M}
,
a
¯
=
(
a
1
,
a
2
,
…
,
a
n
)
{\displaystyle {\bar {a}}=(a_{1},a_{2},\ldots ,a_{n})}
M
⊨
ϕ
[
a
¯
]
⇒
N
⊨
ϕ
[
b
¯
]
{\displaystyle M\models \phi [{\bar {a}}]\Rightarrow N\models \phi [{\bar {b}}]}
where
b
¯
{\displaystyle {\bar {b}}}
is the image of
a
¯
{\displaystyle {\bar {a}}}
under
j
{\displaystyle j}
:
b
¯
=
(
b
1
,
b
2
,
…
,
b
n
)
=
(
j
(
a
1
)
,
j
(
a
2
)
,
…
,
j
(
a
n
)
)
=
j
(
a
¯
)
{\displaystyle {\bar {b}}=(b_{1},b_{2},\ldots ,b_{n})=(j(a_{1}),j(a_{2}),\ldots ,j(a_{n}))=j({\bar {a}})}
then
j
{\displaystyle j}
is a homomorphism. If instead:
M
⊨
ϕ
[
a
¯
]
⇔
N
⊨
ϕ
[
b
¯
]
{\displaystyle M\models \phi [{\bar {a}}]\Leftrightarrow N\models \phi [{\bar {b}}]}
then
j
{\displaystyle j}
is an embedding.