Jump to content

Injective function

From Wikipedia, the free encyclopedia
(Redirected from Injective)

In mathematics, an injective function (also known as injection, or one-to-one function[1]) is a function f that maps distinct elements of its domain to distinct elements of its codomain; that is, x1x2 implies f(x1) ≠ f(x2) (equivalently by contraposition, f(x1) = f(x2) implies x1 = x2). In other words, every element of the function's codomain is the image of at most one element of its domain.[2] The term one-to-one function must not be confused with one-to-one correspondence that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain.

A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an injective homomorphism is also called a monomorphism. However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism.[3] This is thus a theorem that they are equivalent for algebraic structures; see Homomorphism § Monomorphism for more details.

A function that is not injective is sometimes called many-to-one.[2]

Definition

[edit]
An injective function, which is not also surjective

Let be a function whose domain is a set . The function is said to be injective provided that for all and in if , then ; that is, implies . Equivalently, if , then in the contrapositive statement.

Symbolically, which is logically equivalent to the contrapositive,[4]An injective function (or, more generally, a monomorphism) is often denoted by using the specialized arrows ↣ or ↪ (for example, or ), although some authors specifically reserve ↪ for an inclusion map.[5]

Examples

[edit]

For visual examples, readers are directed to the gallery section.

  • For any set and any subset , the inclusion map (which sends any element to itself) is injective. In particular, the identity function is always injective (and in fact bijective).
  • If the domain of a function is the empty set, then the function is the empty function, which is injective.
  • If the domain of a function has one element (that is, it is a singleton set), then the function is always injective.
  • The function defined by is injective.
  • The function defined by is not injective, because (for example) However, if is redefined so that its domain is the non-negative real numbers [0, +∞), then is injective.
  • The exponential function defined by is injective (but not surjective, as no real value maps to a negative number).
  • The natural logarithm function defined by is injective.
  • The function defined by is not injective, since, for example, .

More generally, when and are both the real line , then an injective function is one whose graph is never intersected by any horizontal line more than once. This principle is referred to as the horizontal line test.[2]

Injections can be undone

[edit]

Functions with left inverses are always injections. That is, given , if there is a function such that for every , , then is injective. The proof is that

In this case, is called a retraction of . Conversely, is called a section of . For example: is retracted by .

Conversely, every injection with a non-empty domain has a left inverse . It can be defined by choosing an element in the domain of and setting to the unique element of the pre-image (if it is non-empty) or to (otherwise).[6]

The left inverse is not necessarily an inverse of because the composition in the other order, , may differ from the identity on . In other words, an injective function can be "reversed" by a left inverse, but is not necessarily invertible, which requires that the function is bijective.

Injections may be made invertible

[edit]

In fact, to turn an injective function into a bijective (hence invertible) function, it suffices to replace its codomain by its actual image That is, let such that for all ; then is bijective. Indeed, can be factored as , where is the inclusion function from into .

More generally, injective partial functions are called partial bijections.

Other properties

[edit]
The composition of two injective functions is injective.
  • If and are both injective then is injective.
  • If is injective, then is injective (but need not be).
  • is injective if and only if, given any functions , whenever , then . In other words, injective functions are precisely the monomorphisms in the category Set of sets.
  • If is injective and is a subset of , then . Thus, can be recovered from its image .
  • If is injective and and are both subsets of , then .
  • Every function can be decomposed as for a suitable injection and surjection . This decomposition is unique up to isomorphism, and may be thought of as the inclusion function of the range of as a subset of the codomain of .
  • If is an injective function, then has at least as many elements as in the sense of cardinal numbers. In particular, if, in addition, there is an injection from to , then and have the same cardinal number. (This is known as the Cantor–Bernstein–Schroeder theorem.)
  • If both and are finite with the same number of elements, then is injective if and only if is surjective (in which case is bijective).
  • An injective function which is a homomorphism between two algebraic structures is an embedding.
  • Unlike surjectivity, which is a relation between the graph of a function and its codomain, injectivity is a property of the graph of the function alone; that is, whether a function is injective can be decided by only considering the graph (and not the codomain) of .

Proving that functions are injective

[edit]

A proof that a function is injective depends on how the function is presented and what properties the function holds. For functions that are given by some formula there is a basic idea. We use the definition of injectivity, namely that if , then .[7]

Here is an example:

Proof: Let . Suppose . So implies , which implies . Therefore, it follows from the definition that is injective.

There are multiple other methods of proving that a function is injective. For example, in calculus if is a differentiable function defined on some interval, then it is sufficient to show that the derivative is always positive or always negative on that interval. In linear algebra, if is a linear transformation it is sufficient to show that the kernel of contains only the zero vector. If is a function with finite domain it is sufficient to look through the list of images of each domain element and check that no image occurs twice on the list.

A graphical approach for a real-valued function of a real variable is the horizontal line test. If every horizontal line intersects the curve of in at most one point, then is injective or one-to-one.

[edit]

See also

[edit]

Notes

[edit]
  1. ^ Sometimes one-one function in Indian mathematical education. "Chapter 1: Relations and functions" (PDF). Archived (PDF) from the original on December 26, 2023 – via NCERT.
  2. ^ a b c "Injective, Surjective and Bijective". Math is Fun. Retrieved 2019-12-07.
  3. ^ "Section 7.3 (00V5): Injective and surjective maps of presheaves". The Stacks project. Retrieved 2019-12-07.
  4. ^ Farlow, S. J. "Section 4.2 Injections, Surjections, and Bijections" (PDF). Mathematics & Statistics - University of Maine. Archived from the original (PDF) on Dec 7, 2019. Retrieved 2019-12-06.
  5. ^ "What are usual notations for surjective, injective and bijective functions?". Mathematics Stack Exchange. Retrieved 2024-11-24.
  6. ^ Unlike the corresponding statement that every surjective function has a right inverse, this does not require the axiom of choice, as the existence of is implied by the non-emptiness of the domain. However, this statement may fail in less conventional mathematics such as constructive mathematics. In constructive mathematics, the inclusion of the two-element set in the reals cannot have a left inverse, as it would violate indecomposability, by giving a retraction of the real line to the set {0,1}.
  7. ^ Williams, Peter (Aug 21, 1996). "Proving Functions One-to-One". Department of Mathematics at CSU San Bernardino Reference Notes Page. Archived from the original on 4 June 2017.

References

[edit]
[edit]