Q导数也称为杰克逊导数,乃是一般导数的Q模拟,由英国数学家F. H. Jackson创立。
函数f(x)的q-导数定义如下:

或书写为
.

当as q → 1时,化为寻常的导数, → d⁄dx,
q-导数算符是一个线性算子:



若
. 则

q-导数 的本征值是q-指数 eq(x).
![{\displaystyle \left({\frac {d}{dz}}\right)_{q}z^{n}={\frac {1-q^{n}}{1-q}}z^{n-1}=[n]_{q}z^{n-1}}](/media/api/rest_v1/media/math/render/svg/64a0fdcac5de2e43d295dde69328b13b64d51c6c)
其中
是n的 q括号
并且
.
一个函数的n阶导数为:
![{\displaystyle (D_{q}^{n}f)(0)={\frac {f^{(n)}(0)}{n!}}{\frac {(q;q)_{n}}{(1-q)^{n}}}={\frac {f^{(n)}(0)}{n!}}[n]_{q}!}](/media/api/rest_v1/media/math/render/svg/0ffbbfd8c17009de664036b8758cb8dcc679638a)
![{\displaystyle f(z)=\sum _{n=0}^{\infty }f^{(n)}(0)\,{\frac {z^{n}}{n!}}=\sum _{n=0}^{\infty }(D_{q}^{n}f)(0)\,{\frac {z^{n}}{[n]_{q}!}}}](/media/api/rest_v1/media/math/render/svg/bb3f1e9b829520538feb6987126b00f1c1cc6c53)
q derivative of sin(x)
|
q derivative of sin(x) 3D plot
|
q derivative of sin(x) 2D animation
|
q derivative of sin(x) density plot
|
q derivative of tanh(x) animation
|
q derivative of tanh(x) 3D
|
q derivative of tanh(z) complex 3D
|
q derivative of tanh(z) 2D density
|
- F. H. Jackson (1908), On q-functions and a certain difference operator, Trans. Roy. Soc. Edin., 46 253-281.
- Victor Kac, Pokman Cheung, Quantum Calculus, Universitext, Springer-Verlag, 2002. ISBN 0-387-95341-8