跳转到内容

無理數

本页使用了标题或全文手工转换
维基百科,自由的百科全书
各种各样的
基本

延伸
其他

圓周率
自然對數的底
虛數單位
無限大

無理數(irrational number)是指有理数以外的实数,當中的「理」字来自于拉丁语的rationalis,意思是「理解」,实际是拉丁文对于logos「说明」的翻译,是指无法用两整数之比来说明的无理数。

有理數實數不能寫作兩整數之比。若將它寫成小數形式,小數點後有無限多,並且不會循環,即无限不循环小数(任何有限或无限循环小数可表示成两整数的比)。常見無理數有大部分的平方根πe(後兩者同時為超越數)等。無理數另一特徵是無限的連分數表達式

傳說中,无理数最早由畢達哥拉斯學派弟子希伯斯发现,他以幾何方法證明無法用整数分數表示;而畢達哥拉斯深信任意数均可用整数及分数表示,不相信無理數存在,後來希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。另見第一次數學危機

無理數可以通過有理數的分划的概念來定義。

举例

[编辑]
  1. 1.73205080…
  2. =0.47712125…
  3. 2.71828182845904523536…
  4. 0.70710678…
  5. 3.141592653589793238462…

性质

[编辑]
  • 无理数加或减无理数不一定得无理数,如
  • 无理数乘不等于0的有理数必得无理数。
  • 无理数的平方根立方根等次方根必得无理数。

不知是否是無理數的數

[编辑]

等,事实上,對于任何非零整數,不知道是否無理數。

無理數與無理數的四則運算的結果往往不知道是否無理數,只有π-π=0、等除外。

我們亦不知道欧拉-马歇罗尼常数卡塔兰常数费根鲍姆常数是否無理數。

無理數集的特性

[编辑]

無理數集是不可數集(有理數集是可數集而實數集是不可數集)。無理數集是不完備拓撲空間,它與所有正數數列的集拓撲同構,當中的同構映射是無理數的連分數開展,因而贝尔纲定理可應用於無數間的拓撲空間。

無理化作連分數的表達式

[编辑]

選取正實數使

經由遞迴處理

無理數之證

[编辑]

证明是无理数

[编辑]

假设是有理数,且是最简分数,是正整数且不是完全平方数。

两边平方,得。将此式改写为

因为都是不为0的完全平方数,所以只有在也是完全平方数的情况下,此式才存在解。当不是完全平方数时,那么不存在这样的,所以就是无理数。

可以进一步得出当不是完全平方数时,方程的解是无理数。

证明是无理数

[编辑]

假设是有理数,且,那么有

因为是偶数,是奇数,所以得到矛盾,因此是无理数。

参见

[编辑]

外部連結

[编辑]