ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ
| ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ |
|---|
| ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ |
|---|
| ਇਤਿਹਾਸ |
ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰ, ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ 1928 ਵਿੱਚ ਬ੍ਰਿਟਿਸ਼ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਪੌਲ ਡੀਰਾਕ ਦੁਆਰਾ ਸੂਤਰਬੱਧ ਕੀਤੀ ਇੱਕ ਸਾਪੇਖਿਕ ਤਰੰਗ ਸਮੀਕਰਨ ਹੈ। ਆਪਣੀ ਸੁਤੰਤਰ ਕਿਸਮ ਵਿੱਚ, ਜਾਂ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਇੰਟ੍ਰੈਕਸ਼ਨਾਂ ਸਮੇਤ, ਇਹ ਇਲੈਕਟ੍ਰੌਨਾਂ ਅਤੇ ਕੁਆਰਕਾਂ ਵਰਗੇ ਸਾਰੇ ਸਪਿੱਨ- 1⁄2 ਪੁੰਜ-ਯੁਕਤ ਕਣਾਂ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ, ਜਿਹਨਾਂ ਵਾਸਤੇ ਪੇਅਰਟੀ ਇੱਕ ਸਮਰੂਪਤਾ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਇਹ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅਤੇ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੋਵੇਂ ਹੀ ਥਿਊਰੀਆਂ ਦੇ ਸਿਧਾਂਤਾਂ ਦੇ ਅਨੁਕੂਲ ਹੁੰਦੀ ਹੈ,[1] ਅਤੇ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਵਾਸਤੇ ਪੂਰੀ ਤਰਾਂ ਜ਼ਿੰਮੇਵਾਰ ਪਹਿਲੀ ਥਿਊਰੀ ਸੀ। ਕਿਸੇ ਪੂਰੀ ਤਰਾਂ ਬੇਢਬੇ ਤਰੀਕੇ ਵਾਲੇ ਹਾਈਡ੍ਰੋਜਨ ਸਪੈਕਟ੍ਰਮ ਦੇ ਸੂਖਮ ਵੇਰਵੇ ਲਈ ਵੀ ਇਸਨੂੰ ਲਿਆ ਗਿਆ ਹੈ।
ਇਹ ਇਕੁਏਸ਼ਨ ਪਦਾਰਥ ਦੀ ਇੱਕ ਨਵੀਂ ਕਿਸਮ, ਐਂਟੀਮੈਟਰ (ਉਲਟ ਪਦਾਰਥ) ਦੀ ਹੋਂਦ ਤੋਂ ਭਾਵ ਵੀ ਰੱਖਦੀ ਹੈ, ਜੋ ਪਹਿਲਾਂ ਸ਼ੱਕੀ ਘੇਰੇ ਵਿੱਚ ਸੀ। ਅਤੇ ਕਦੇ ਪਰਖੀ ਨਹੀਂ ਗਈ ਸੀ, ਅਤੇ ਜਿਸਨੂੰ ਕਈ ਸਾਲਾਂ ਬਾਦ ਪ੍ਰਯੋਗਿਕ ਤੌਰ ਤੇ ਸਾਬਤ ਕੀਤਾ ਗਿਆ ਸੀ। ਇਸਨੇ ਸਪਿੱਨ ਦੀ ਪੌਲੀ ਦੀ ਵਰਤਾਰਾਤਮਿਕ ਥਿਊਰੀ ਵਿੱਚ ਕਈ ਪੁਰਜੇ ਵੇਵ ਫੰਕਸ਼ਨਾਂ ਦੀ ਜਾਣ-ਪਛਾਣ ਲਈ ਇੱਕ ਸਿਧਾਂਤਿਕ ਪੁਸ਼ਟੀਕਰਨ ਵੀ ਮੁਹੱਈਆ ਕਰਵਾਇਆ; ਡੀਰਾਕ ਥਿਊਰੀ ਅੰਦਰ ਵੇਵ ਫੰਕਸ਼ਨ ਚਾਰ ਕੰਪਲੈਕਸ ਨੰਬਰਾਂ (ਜਿਹਨਾਂ ਨੂੰ ਬਾਇਸਪਿਨੌਰ ਕਿਹਾ ਜਾਂਦਾ ਹੈ) ਦੇ ਵੈਕਟਰ ਹੁੰਦੇ ਹਨ, ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਦੋ ਕੰਪਲੈਕਸ ਨੰਬਰ ਗੈਰ-ਸਾਪੇਖਿਕ ਸੀਮਾ ਅੰਦਰ ਪੌਲੀ ਵੇਵ ਫੰਕਸ਼ਨ ਨਾਲ ਮਿਲਦੇ ਜੁਲਦੇ ਹਨ, ਜੋ ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ ਤੋਂ ਉਲਟ ਹਨ ਜੋ ਵੇਵ ਫੰਕਸ਼ਨਾਂ ਨੂੰ ਸਿਰਫ ਇੱਕ ਕੰਪਲੈਕਸ ਮੁੱਲ ਨਾਲ ਹੀ ਦਰਸਾਉਂਸੀ ਹੈ। ਹੋਰ ਤਾਂ ਹੋਰ, ਜ਼ੀਰੋ ਪੁੰਜ ਦੀ ਹੱਦ ਵਿੱਚ, ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ ਵੇਇਲ ਇਕੁਏਸ਼ਨ ਤੱਕ ਘਟ (ਸੁੰਗੜ) ਜਾਂਦੀ ਹੈ।
ਭਾਵੇਂ ਡੀਰਾਕ ਨੇ ਪਹਿਲਾਂ ਪੂਰੀ ਤਰਾਂ ਆਪਣੇ ਨਤੀਜਿਆਂ ਦੀ ਮਹੱਤਤਾ ਸਵੀਕਾਰ ਨਹੀਂ ਕੀਤੀ ਸੀ।, ਫੇਰ ਵੀ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅਤੇ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਸੰਯੁਕਤਤਾ ਦੇ ਇੱਕ ਨਤੀਜੇ ਦੇ ਤੌਰ ਤੇ ਸਪਿੱਨ ਦੀ ਲਾਜ਼ਮੀ ਮਹੱਤਵਪੂਰਨ ਵਿਆਖਿਆ- ਅਤੇ ਪੌਜ਼ੀਟ੍ਰੌਨ ਦੀ ਪ੍ਰਮਾਣਿਕ ਖੋਜ- ਸਿਧਾਂਤਿਕ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੀਆਂ ਮਹਾਨ ਪ੍ਰਾਪਤੀਆਂ ਵਿੱਚੋਂ ਇੱਕ ਪ੍ਰਾਪਤੀ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ। ਇਹ ਉਪਲਬਧੀ ਪੂਰੀ ਤਰਾਂ ਨਾਲ਼ ਉਸ ਤੋਂ ਪਹਿਲਾਂ ਦੇ ਨਿਊਟਨ, ਮੈਕਸਵਲ, ਅਤੇ ਆਈਨਸਟਾਈਨ ਦੇ ਕੰਮਾਂ ਨਾਲ ਸਬੰਧਤ ਦਰਸਾਈਆਂ ਗਈਆਂ ਹਨ।[2] ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ, ਅੱਧਾ-ਸਪਿੱਨ ਕਣਾਂ ਨਾਲ ਸਬੰਧਤ ਕੁਆਂਟਮ ਫੀਲਡਾਂ ਦਰਸਾਉਣ ਲਈ ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ ਨੂੰ ਪੁਨਰ-ਵਿਆਖਿਆਬੱਧ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
ਗਣਿਤਿਕ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ
[ਸੋਧੋ]ਡੀਰਾਲ ਦੁਆਰਾ ਮੂਲ ਰੂਪ ਵਿੱਚ ਪੇਸ਼ ਕੀਤੀ ਗਈ ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ ਇਹ ਹੈ:[3]
Dirac equation (original)
ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ ਨੂੰ ਸਾਪੇਖਿਕ ਬਣਾਉਂਦੇ ਹੋਏ
[ਸੋਧੋ]ਡੀਰਾਕ ਦਾ ਕੂਪ
[ਸੋਧੋ]ਕੋਵੇਰੀਅੰਟ ਕਿਸਮ ਅਤੇ ਸਾਪੇਖਿਕ ਇਨਵੇਰੀਅੰਸ
[ਸੋਧੋ]ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਕਰੰਟ ਦਾ ਰੂਪਾਂਤ੍ਰਨ
[ਸੋਧੋ]ਹੱਲ
[ਸੋਧੋ]ਪੌਲੀ ਥਿਊਰੀ ਨਾਲ ਤੁਲਨਾ
[ਸੋਧੋ]ਵੇਇਲ ਥਿਊਰੀ ਨਾਲ ਤੁਲਨਾ
[ਸੋਧੋ]ਡੀਰਾਕ ਲਗ੍ਰਾਂਜੀਅਨ
[ਸੋਧੋ]ਇੱਕ ਸਥਾਨਿਕ ਅਯਾਮ ਅੰਦਰ ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ
[ਸੋਧੋ]ਭੌਤਿਕੀ ਵਿਆਖਿਆ
[ਸੋਧੋ]ਔਬਜ਼ਰਵੇਬਲਾਂ ਦੀ ਪਛਾਣ
[ਸੋਧੋ]ਹੋਲ ਥਿਊਰੀ
[ਸੋਧੋ]ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਅੰਦਰ
[ਸੋਧੋ]ਹੋਰ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ
[ਸੋਧੋ]ਇੱਕ ਵਾਸਤਵਿਕ ਪੁਰਜੇ ਵਿੱਚ ਇੱਕ ਡਿੱਫ਼੍ਰੈਂਸ਼ੀਅਲ ਇਕੁਏਸ਼ਨ ਦੇ ਤੌਰ ਤੇ
[ਸੋਧੋ]ਵਕਰਿਤ ਸਪੇਸਟਾਈਮ
[ਸੋਧੋ]ਭੌਤਿਕੀ ਸਪੇਸ ਦਾ ਅਲਜਬਰਾ
[ਸੋਧੋ]ਇਹ ਵੀ ਦੇਖੋ
[ਸੋਧੋ]The Dirac equation appears on the floor of Westminster Abbey on the plaque commemorating Paul Dirac's life, which was inaugurated on November 13, 1995.[4]
ਹਵਾਲੇ
[ਸੋਧੋ]- ↑ ਕਿਤਾਬ-ਭਾਰਤੀ ਕਾਵਿ-ਸ਼ਾਸਤਰ ( ਡਾ.ਸ਼ੁਕਦੇਵ ਸ਼ਰਮਾ)
- ↑ ਕਿਤਾਬ-ਭਾਰਤੀ ਕਾਵਿ-ਸ਼ਾਸਤਰ ( ਡਾ.ਸ਼ੁਕਦੇਵ ਸ਼ਰਮਾ)
- ↑ ਕਿਤਾਬ-ਭਾਰਤੀ ਕਾਵਿ-ਸ਼ਾਸਤਰ ( ਡਾ.ਸ਼ੁਕਦੇਵ ਸ਼ਰਮਾ)
- ↑ Gisela Dirac-Wahrenburg. "Paul Dirac". Dirac.ch. Retrieved 2013-07-12.
ਚੋਣਵੇਂ ਪੇਪਰ
[ਸੋਧੋ]- Dirac, P. A. M. (1928). "The Quantum Theory of the Electron" (PDF). Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 117 (778): 610. Bibcode:1928RSPSA.117..610D. doi:10.1098/rspa.1928.0023. JSTOR 94981.
- Dirac, P. A. M. (1930). "A Theory of Electrons and Protons". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 126 (801): 360. Bibcode:1930RSPSA.126..360D. doi:10.1098/rspa.1930.0013. JSTOR 95359.
- Anderson, Carl (1933). "The Positive Electron". Physical Review. 43 (6): 491. Bibcode:1933PhRv...43..491A. doi:10.1103/PhysRev.43.491.
- Frisch, R.; Stern, O. (1933). "Über die magnetische Ablenkung von Wasserstoffmolekülen und das magnetische Moment des Protons. I". Zeitschrift für Physik. 85: 4. Bibcode:1933ZPhy...85....4F. doi:10.1007/BF01330773.
- M. Arminjon; F. Reifler (2013). "Equivalent forms of Dirac equations in curved spacetimes and generalized de Broglie relations". Brazilian Journal of Physics. 43 (1–2): 64–77. arXiv:1103.3201. Bibcode:2013BrJPh..43...64A. doi:10.1007/s13538-012-0111-0.
ਪੁਸਤਕਾਂ
[ਸੋਧੋ]- ਕਿਤਾਬ-ਭਾਰਤੀ ਕਾਵਿ-ਸ਼ਾਸਤਰ ( ਡਾ.ਸ਼ੁਕਦੇਵ ਸ਼ਰਮਾ)
- ਕਿਤਾਬ-ਭਾਰਤੀ ਕਾਵਿ-ਸ਼ਾਸਤਰ ( ਡਾ.ਸ਼ੁਕਦੇਵ ਸ਼ਰਮਾ)
- ਕਿਤਾਬ-ਭਾਰਤੀ ਕਾਵਿ-ਸ਼ਾਸਤਰ ( ਡਾ.ਸ਼ੁਕਦੇਵ ਸ਼ਰਮਾ)
- ਕਿਤਾਬ-ਭਾਰਤੀ ਕਾਵਿ-ਸ਼ਾਸਤਰ ( ਡਾ.ਸ਼ੁਕਦੇਵ ਸ਼ਰਮਾ)
- ਕਿਤਾਬ-ਭਾਰਤੀ ਕਾਵਿ-ਸ਼ਾਸਤਰ ( ਡਾ.ਸ਼ੁਕਦੇਵ ਸ਼ਰਮਾ)
- ਕਿਤਾਬ-ਭਾਰਤੀ ਕਾਵਿ-ਸ਼ਾਸਤਰ ( ਡਾ.ਸ਼ੁਕਦੇਵ ਸ਼ਰਮਾ)
ਬਾਹਰੀ ਲਿੰਕ
[ਸੋਧੋ]- The Dirac Equation at MathPages
- The Nature of the Dirac Equation, its solutions, and Spin[permanent dead link]
- Dirac equation for a spin ½ particle
- Pedagogic Aids to Quantum Field Theory click on Chap. 4 for a step-by-small-step introduction to the Dirac equation, spinors, and relativistic spin/helicity operators.
- BBC Documentary Atom 3 The Illusion of Reality