Diskussion:Ziegenproblem
Füge neue Diskussionsthemen unten an:
Klicke auf , um ein neues Diskussionsthema zu beginnen.Archiv |
Wie wird ein Archiv angelegt? |
Auf dieser Seite werden Abschnitte ab Überschriftenebene 2 automatisch archiviert, die seit 7 Tagen mit dem Baustein {{Erledigt|1=--~~~~}} versehen sind. |
Hilfen und Hinweise für zukünftige Erweiterungen/Verbesserungen und Neuautoren
Anstatt sich gegenseitig um die beste oder richtige Lösung und eigene Darstellungen zu streiten (mein subjektiver Eindruck von einem Großteil der hier beobachteten Diskussion), sollte der Artikel (gemäß den WP-Richtlinien) stattdessen die Darstellung des Problems und seiner Lösungen in reputablen Quellen wiedergeben. Dazu habe ich hier noch einmal eine Reihe reputabler Quellen gesammelt, die von allen online eingesehen werden können, an deren Inhalt sowie an den im Artikel angegebenen weiteren (offline) Quellen sollte sich der Artikel orientieren und dabei möglichst die verschiedenen Darstellungen und Abschnitte auch direkt den einzelnen Quellen zuordnen, sei es mit Einzelnachweisen oder auch im Text direkt wie im englischen Interwiki:
Fachliteratur Mathematik (Bücher, Fachpublikationen, verlässliche Fachwebseiten)
- Jason Rosenhouse: The Monty Hall Problem. Oxford University Press 2009, ISBN 978-0-19-536789-8, S. 1–33 (Online-Kopie des 1. Kapitels, Preprint)
- Behrends, Ehrhard: Five-Minute Mathematics. AMS Bookstore, 2008, ISBN 978-0-8218-4348-2, S. 57 (google.com).
- D'Ariano, G.M et al. (2002). "The Quantum Monty Hall Problem" (PDF). Los Alamos National Laboratory, (February 21, 2002). Retrieved January 15, 2007.
- Keith Devlin: http://www.maa.org/devlin/devlin_07_03.html Devlin's Angle: Monty Hall] (2003), Monty Hall revisited (2005), The Mathematical Association of America
- Grinstead, Charles M. and Snell, J. Laurie, Online version of Introduction to Probability, 2nd edition, published by the American Mathematical Society, Copyright (C) 2003 Charles M. Grinstead and J. Laurie Snell.: Grinstead and Snell’s Introduction to Probability. 4. Juli 2006 (dartmouth.edu [PDF; abgerufen am 2. April 2008]).
- Rosenthal: Monty Hall, Monty Fall, Monty Crawl
- Eisenhauer: Monty-Hall-Matrix - Fachzeitschrift
- Henze: Stochastik für Einsteiger -einfache Lösung auf S.52, detallierteste Modellierung (3-stufiges Experiment mit bedingten Wahrscheinlichkeiten) - S. 104-105
- Hans-Otto Georgii : Stochastik - S.54-57
- Olle Häggström: Olle Häggström: Streifzüge durch die Wahrscheinlichkeitstheorie - S.19-20
- Marc Steinbach: Autos, Ziegen und Streithähne. In: Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB). Report Nr. 40, S. 7
- Kam Hon Chou: To Switch or Not To Switch? - Univserity of New Foundland
- 1. Leserbrief Steve Selvins an die Zeitschrift The American Statistician (1975) (JSTOR) - hier wurde das Problem erstmals formuliert und gelöst
- 2. Leserbrief Steve Selvins von 1975 - eine etwas formalere Lösung mit der expliziten Verwendung bedingter Wahrscheinlichkeiten.
- STEPHEN K. LUCAS, JASON ROSENHOUSE: OPTIMAL STRATEGIES FOR THE PROGRESSIVE MONTY HALL PROBLEM
- Monty Hall auf Mathworld
- Monty Hall auf cut-the-knot
- Matheprisma - Unterrichtseinheit
- Monty Hall Problem auf Citizendium (von mehreren Matheprofs verfasst)
- Matthew A. Carlton: Pedigrees, Prizes, and Prisoners: The Misuse of Conditional Probability. Journal of Statistics Education Volume 13, Number 2 (2005)
- George Bol: Wahrscheinlichkeitstheorie - S.232 ff.
- Stefan Waner, Steve Costenoble: Finite Math and Applied Calculus - S.539ff.
- David Stirzaker: Elementary Probability - S. 12, 75
- W. D. Wallis: A beginner's guide to discrete mathematics - S. 198ff.
- Gnedin, Sasha The Mondee Gills Game. The Mathematical Intelligencer, 2011 (online)
- Gill, Richard (2011) The Monty Hall Problem is not a probability puzzle (it's a challenge in mathematical modelling). Statistica Neerlandica 65(1) 58-71, February 2011. Eprint [1]
- Gill, Richard (2011b) Monty Hall Problem (version 5). StatProb: The Encyclopedia Sponsored by Statistics and Probability Societies 2011. [2]
- Lucas, Stephen, Jason Rosenhouse, and Andrew Schepler (2009). "The Monty Hall Problem, Reconsidered," Mathematics Magazine 82(5). Retrieved from http://educ.jmu.edu/~lucassk/Papers/MHOverview2.pdf July 9, 2012.
sonstige Literatur (allgemeine Quellen, Fachpublikationen zu nichtmathematischen Aspekten)
- Mueser, Peter R. and Granberg, Donald (May 1999): The Monty Hall Dilemma Revisited: Understanding the Interaction of Problem Definition and Decision Making, University of Missouri Working Paper 99-06. Retrieved July 5, 2005.
- Krauss, Stefan and Wang, X. T. (2003). "The Psychology of the Monty Hall Problem: Discovering Psychological Mechanisms for Solving a Tenacious Brain Teaser," Journal of Experimental Psychology: General 132(1). Retrieved from http://www.usd.edu/~xtwang/Papers/MontyHallPaper.pdf March 30, 2008.
- Tierney, John (1991). "Behind Monty Hall's Doors: Puzzle, Debate and Answer?", The New York Times, 1991-07-21. Retrieved on 2008-01-18.
- Tierney, John (2008). "And Behind Door No. 1, a Fatal Flaw", The New York Times, 2008-04-08. Retrieved on 2008-04-08.
- Darstellung auf der webseite von Vos Savant
- Hall, Monty (1975). The Monty Hall Problem. LetsMakeADeal.com. Includes May 12, 1975 letter to Steve Selvin. Retrieved January 15, 2007.
- Mack, Donald R.: The Unofficial IEEE Brainbuster Gamebook. Wiley-IEEE, 1992, ISBN 978-0-7803-0423-9, S. 76 (google.com).
Inhalte für einen guten Artikel
Wenn man die (Fach)literatur überfliegt schälen sich schnell einige Kernpunkte heraus, die ein guter Artikel haben bzw. behandeln sollte (egal wie man sie im Detail gliedert oder innerhalb des Artikels gewichtet):
- einfache Lösung ohne bedingte Wahrscheinlichkeiten
- detallierte/komplexe Lösung mit bedingten Wahrscheinlichkeiten
- Unterschiede zwischen beiden Lösungen, Erwähnung der (Fach)kritik an der einfachen Lösung
- "Originalproblem" und Lösung bei Vos Savant (da Auslöser der Kontroverse und verantwortlich für Wirkung und Bekanntheit des Problems)
- Unklarheiten des Originalproblems, Problemvarianten
- historischer Abriss
Vorgehen bei persönlichen oder inhaltlichen Dauerkonflikten zwischen Autoren
Wenn man bei nicht behebbaren Meinungsverschiedenheiten Editwars oder die Stagnation des Artikel auf einem möglicherweise schlechten Nivau verhindern will, so kann man eine 3-te Meinung einholen oder weniger formal direkt ein zuständiges Fachportal um Begutachtung bitten. Als Fachportale bietet sich hier vor allem Mathematik aber auch Logik, Philosophie, Physik, Psychologie, Wirtschaft und Informatik an. Es gibt auch ein Portal statistik, das aber zur Zeit weitgehend inaktiv ist. Wichtig ist, dass sich vorher aber alle aktiven Autoren einig sind, eine 3-te Meinung bzw. Begutachtung durch Experten einzuholen und diese dann auch zu akzeptieren. Sollte es einen einzelnen Autoren geben, der jegliche Einigung und auch eine 3-te Meinung blockiert bzw. unterläuft, so kann dessen Account im Extremfall auch sperren lassen. Auch dafür ist es sinnvoll sich über das Fachportal einen kundigen Admin zu suchen, der beurteilen kann, ob der betroffene Autor eine akzeptablen sachlichen Grund für sein Verhalten hat oder nicht. Wenn ein solcher nicht vorliegt und auch ein administrativen Zureden nicht hilft, kann man ihn gegebenfalls sperren. Bei komplexen und sehr unübersichlichen Streitfragen mit langer Vorgeschichte empfiehlt es sich außerdem, das die betroffen Autoren für umstrittene Abschnitte (zur Not auch für den ganzen Artikel) eine komplette ausformulierte eigene Version vorlegen (auf ihrer Benutzerseite oder auf der Diskussionsseite hier), so dass die begutachtenden Experten einfach die bessere (oder sachlich richtige) Version auswählen können.
So ich verabschiede mich damit demnächst aus der Diskussion und wünsche allen aktiven bzw. zukünftigen Autoren gutes Gelingen beim Erreichen eines besseren Artikels. --Kmhkmh 18:25, 23. Jun. 2009 (CEST)
- Grundsätzliche "Argumente" bitte auf Seite Diskussion:Ziegenproblem/Argumente diskutieren. Gerhardvalentin 00:49, 29. Jan. 2010 (CET)
defekter EN-link
Marc C. Steinbach: Von Autos, Ziegen und Streithähnen. (PDF; 3,6 MB) Kapitel 4.2 --Rabbid bwah! 16:04, 24. Okt. 2014 (CEST)
- Danke für den Hinweis! Habe den Link aktualisiert. Gruß. --Geodel (Diskussion) 19:25, 24. Okt. 2014 (CEST)
- Die 3,6 MB erreicht die Diskussion hier auch noch, wenn das so weitergeht. Aber dann rein mit Text. --mfb (Diskussion) 14:27, 26. Jan. 2015 (CET)
nicht so schwer
Die Erklärung ist doch eigentlich ganz einfach. Die Wahrscheinlichkeit des Kandidaten zu Beginn ein Ziegentor zu wählen beträgt 2/3. Der Moderator muss dir also in zwei von drei Fällen die zweite Ziege zeigen. Also enden zwei von drei dieser Versuchsanordnungen mit dem Gewinn des Autos. Will mich ja net loben, aber hab das nach 5 Min Nachdenken rausbekommen ;)
lg volkmar (nicht signierter Beitrag von 178.7.7.226 (Diskussion) 14:42, 20. Dez. 2014 (CET))
- Das stimmt dann und nur dann, wenn der Moderator eine nicht gewählte (!) Ziegentür (!) öffnen muss und dem Kandidaten einen Wechsel anbieten muss. Dieser Trivialfall ist auch nicht umstritten. Albtal nennt dies sogar eine „Scherzaufgabe“. Interessant wird es dann, wenn der Moderator das nicht tun muss bzw. der Kandidat nicht weiß, ob der Moderator das, was er tut, tun muss. Vielleicht hat der Kandidat ja zufällig die Tür mit dem Auto gewählt, und der Moderator versucht ihn nur wegzulocken? Darum drehen sich 90 Prozent der Diskussionen hier.
Troubled @sset Work • Talk • Mail 17:10, 20. Dez. 2014 (CET)
- Was ich als Scherzaufgabe bezeichnet habe, ist die Kombination der Aufgabenstellung, die um die Welt ging, mit der Behauptung der 2/3-Lösung; einer Aufgabenstellung also, bei der die entscheidende Voraussetzung, die zu einer 2/3-Lösung führt, fehlt. Hier z.B. aus meinem Diskussionsbeitrag vom 15. April 2014:
- Würde man bei einer Publikation zu einem Problem, von dem man weiß, dass es eine bestimmte Lösung nur unter Zusatzvoraussetzungen hat, nicht als allererstes auf diese Zusatzvoraussetzungen hinweisen? - Aber das genau ist beim Ziegenproblem nicht geschehen. Es sieht so aus, als ob die große Mehrheit der Zwei-Drittel-Befürworter in Anlehnung an die Publizisten auf eine Scherzaufgabe hereingefallen ist. Das Internet ist voll von Belegen dafür.
- Oder aus meinem Diskussionsbeitrag vom 6. Juni 2014:
- Diese Überlegungen führen zum Zentrum der gesamten Debatte: Wenn der Zwang durch die Spielregel nicht vorliegt, ist die Behauptung der 2/3-Lösung ein Scherz, und die Lösung 1/2 ist trivialerweise richtig. Das erklärt auch den "Proteststurm". Und wenn der Zwang durch die Spielregel vorliegt, ist die 2/3-Lösung trivialerweise richtig; und der "Proteststurm" bleibt aus.--Albtal (Diskussion) 13:19, 8. Feb. 2015 (CET)
- Richtig ist, dass die 2⁄3-Lösung falsch ist, wenn „der Zwang durch die Spielregel nicht vorliegt“. Falsch ist, dass die Lösung dann 1⁄2 lautet.
Troubled @sset Work • Talk • Mail 19:18, 7. Mär. 2015 (CET)
- Richtig ist, dass die 2⁄3-Lösung falsch ist, wenn „der Zwang durch die Spielregel nicht vorliegt“. Falsch ist, dass die Lösung dann 1⁄2 lautet.
- Es gibt dann auf Grund der Aufgabenstellung keinen Grund, eine der beiden verbleibenden Türen der anderen vorzuziehen. Damit ist die wesentliche Antwort gegeben. Ob man den Türen nun auf Grund eines Indifferenzprinzips jeweils die Wahrscheinlichkeit 1/2 zuordnet, ist in diesem Zusammenhang ziemlich egal. Einfach zu sagen, die Lösung 1/2 sei dann "falsch", führt nur wieder zurück in den Nebel.--Albtal (Diskussion) 18:44, 10. Mär. 2015 (CET)
- In einer Urne sind rote und blaue Kugeln. Eine Kugel wird gezogen. Wie groß ist die Wahrscheinlichkeit, dass sie rot ist? -- HilberTraum (d, m) 20:03, 10. Mär. 2015 (CET)
- Eine Wahrscheinlichkeit von 1⁄2 würde bedeuten, dass das Verhalten des Kandidaten keine Rolle spielt, dass also bei unendlich häufiger Durchführung dieses Spiels der Kandidat in 50 Prozent der Fälle das Auto gewinnt, egal ob er nie wechselt, immer wechselt oder irgendetwas dazwischen. Dies ist aber offensichtlich nicht der Fall: Wenn ein maximal böswilliger Moderator den Wechsel immer nur dann anbietet, wenn der Kandidat im ersten Schritt zufällig das Auto gewählt hat, wird der Kandidat bei einem Wechsel immer verlieren und bei Nichtwechsel immer gewinnen. Das Ergebnis des Spiels ist also nicht unabhängig von der Entscheidung des Kandidaten und die Wahrscheinlichkeit also nicht 1⁄2.
Troubled @sset Work • Talk • Mail 20:23, 21. Mär. 2015 (CET)
- Eine Wahrscheinlichkeit von 1⁄2 würde bedeuten, dass das Verhalten des Kandidaten keine Rolle spielt, dass also bei unendlich häufiger Durchführung dieses Spiels der Kandidat in 50 Prozent der Fälle das Auto gewinnt, egal ob er nie wechselt, immer wechselt oder irgendetwas dazwischen. Dies ist aber offensichtlich nicht der Fall: Wenn ein maximal böswilliger Moderator den Wechsel immer nur dann anbietet, wenn der Kandidat im ersten Schritt zufällig das Auto gewählt hat, wird der Kandidat bei einem Wechsel immer verlieren und bei Nichtwechsel immer gewinnen. Das Ergebnis des Spiels ist also nicht unabhängig von der Entscheidung des Kandidaten und die Wahrscheinlichkeit also nicht 1⁄2.
- Gut ist, dass mein Diskussionsbeitrag, auf den dies Erwiderungen sein sollen, nur einige Zeilen weiter oben steht.--Albtal (Diskussion) 08:23, 27. Mär. 2015 (CET)
- Ja, dass ein Diskussionsbeitrag und Erwiderungen darauf so dicht beisammen stehen, ist zumindest auf dieser Seite in der Tat sehr ungewöhnlich. -- HilberTraum (d, m) 10:07, 27. Mär. 2015 (CET)
- Gut ist, dass mein Diskussionsbeitrag, auf den dies Erwiderungen sein sollen, nur einige Zeilen weiter oben steht.--Albtal (Diskussion) 08:23, 27. Mär. 2015 (CET)
Unterschlagung!
bei den beispielen wird jeweils ein spieldurchgang unterschlagen, nämlich der mit dem "Oder" so sind es nicht 9 sonder 12 spieldurchgänge (nicht signierter Beitrag von 2A02:810A:8380:B50:1812:B7E3:8941:DD68 (Diskussion | Beiträge) 10:59, 11. Jan. 2015 (CET))
- Ja, das ist richtig. Es gibt 12 unterscheidbare mögliche Spielverläufe. Die Reduktion auf 9 Fälle ist ein möglicher Kritikpunkt an diesem Lösungsweg. Siehe auch den dritten Punkt im Abschnitt „Kontroversen“. Grüße -- HilberTraum (d, m) 12:31, 11. Jan. 2015 (CET)
Ja es sind 12 durchläufe... Die tabelle ist wohl falsch f. Standardspiel (nicht signierter Beitrag von 2.200.229.39 (Diskussion) 18:03, 7. Mär. 2015 (CET))
Wenn man sich die 2 Türen betrachtet....hat man natürlich die Chance auf 2/3 für ein Autos und 4/3 die Chance auf eine Ziege. Nur - wem nützt es, wenn man nur Eine Tür aufmachen kann ?!
So weiter gehts: Wenn sich nun eine Tür der beiden nicht erstgewählten öffnet und eine Ziege kommt zum vorschein, wie kommt man auf die Idee zu sagen hinter der zweiten nicht erstgewählten Tür hat man die 2/3 Chance auf ein Auto? (nicht signierter Beitrag von 2a02:810a:8380:b50:c0c5:7cc7:3996:51b1 (Diskussion) 06:28, 29. Jan. 2015 (CET))
- Ja! Genau solche klar strukturierten und verständlichen Diskussionsbeiträge brauchen wir hier! Dann können wir Byte-mäßig vielleicht sogar irgendwann noch an Diskussion:Adolf Hitler vorbeiziehen (siehe eins drunter ;-) -- HilberTraum (d, m) 11:34, 29. Jan. 2015 (CET)
Also wenn man sich das Problem mit 1000 Türen vorstellt, würde man natürlich wechseln. Vielleicht kommt das wechseln ja erst ab 4 Türen wirklich zum tragen? Oder das man die Siegchancen von 1/3 oder 1/1000 um lediglich 50/50 beim Wechsel erhöht? (nicht signierter Beitrag von 2A02:810A:8380:B50:ADAA:DA7C:9228:8CF (Diskussion | Beiträge) 13:16, 2. Feb. 2015 (CET))
- Nein, es ist auch schon bei 3 Türen relevant. Mit mehr Türen wird es nur deutlicher. --mfb (Diskussion) 13:28, 2. Feb. 2015 (CET)
Es handelt sich um eine Vermischung von Perspektiven. Der SpielTheoretiker geht von vielen spielen aus, für den das Spiel einmal spielenden Spieler handelt es sich um Schrödingers Katze bis zwei Tore geöffnet sind, der Moderator kennt die Lösung im Einzelfall und ist außen vor. Die Wahrscheinlichkeit von 2/3 lässt sich durch 1 Spiel nicht einmal beweisen. -- (nicht signierter Beitrag von 2.201.133.249 (Diskussion) 23:06, 20. Mär. 2015 (CET))
Kleiner Nachtrag... Standardspiel: 3 Tore, Moderator darf nur Ziegentore öffnen, Moderator fragt ob Spieler wechseln will. Spieltheoretiker: 2/3 Spieler: erst 1/3, dann 1/2 Moderator: irrelevant, da Lösung bekannt
Bei so einem Spiel mit mehr Toren (ab 4) wirds dann absurd: Spieltheoretiker: nun 2/4 (?) Spieler: nun erst 1/4, dann wieder 1/2 Moderator: wieder irrelevant -- (nicht signierter Beitrag von 2.200.168.193 (Diskussion) 00:28, 21. Mär. 2015 (CET))
- Schrödingers Katze??? Ich hoffe doch den Ziegen geht’s noch gut … -- HilberTraum (d, m) 08:13, 21. Mär. 2015 (CET)
Lässt sich das Problem mathematisch lösen? -- (nicht signierter Beitrag von 2A02:810A:913F:C900:70C6:4A31:7021:CEFD (Diskussion | Beiträge) 01:44, 5. Apr. 2015 (CEST))
Ich erlaube mir hier mal, das abzubrechen. Troubled @sset Work • Talk • Mail 10:27, 5. Apr. 2015 (CEST)
Yesss, Platz 14!!!
Boah Leute, schaut mal diese Liste Wikipedia:Fragen zur Wikipedia#Längste Artikeldiskussion! Wir sind schon auf Platz 14!! Aber immer noch hinter solchen Schnarch-Themen wie „Deutschland“, „Neoliberalismus“ oder „Männerrechtsbewegung“ … ich denke, das können wir noch besser. Oder was meint ihr? … -- HilberTraum (d, m) 19:43, 26. Jan. 2015 (CET)
- Zweifellos, nur wird sich auch die Konkurrenz nicht lumpen lassen.--Kmhkmh (Diskussion) 13:02, 29. Jan. 2015 (CET)
- Also ich bin jetzt zufällig auf diesen „Artikel“ gestoßen (über [Yt], über ein anderes mathematisches „Problem“ und ich habe mir ehrlich gesagt auch nur im Ansatz das Diskussionarchiv angeschaut). Genau gesagt war das Rätzel über das ich hier gekommen bin ein Bsp. vom Philosophen und Psychoanalytiker Paul Watzlawick und seinem Vortrag (1987) Wenn die Lösung das Problem ist. Das menschliche Denken scheint das Problem (anders gesagt wir uns selbst Grenzen setzen oder setzen lassen die es nicht gibt), dafür ist dieses Ziegenproblem wohl wirklich ein gutes Beispiel (ich dachte spontan auch an 50/50). Tatsächlich ist die Wahrscheinlichkeit (das Auto zu haben) der 2. Wahlmöglichkeit direkt abhängig von der Wahrscheinlichkeit der 1. Wahlmöglichkeit. Allerdings sollte der Artikel verbessert werden, die scheinbare Vermutung und die Lösung des Problems sollten schon eingangs formuliert werden und nicht nach Lesen des gesamten Artikels. PS: Oder die Lektüre: Gabriel Stolzenberg: Kann die Untersuchung der Grundlagen der Mathematik uns etwas über das Denken verraten? „Wie wissen wir, was wir zu wissen glauben?“ Beiträge zum Konstruktivismus. In: Paul Watzlawick (Hrsg.): Die erfundene Wirklichkeit. Piper, München 1983, ISBN 3-492-20373-6 ↔ User: Perhelion 07:49, 28. Jan. 2015 (CET)
Falsch zitiert
Ich entferne diesen Text von der Vorderseite:
==== Moderator kann auch das Tor mit dem Auto öffnen ==== Lucus, Rosenhouse, Madison und Schepler analysieren unter anderem auch die Variante, bei der der Moderator sein Tor zufällig unter den beiden verbliebenen Toren wählt und dabei gegebenenfalls auch das Tor mit dem Auto öffnet. Eine kurze Berechnung bestätigt die auch intuitiv naheliegende Vermutung, dass für diese Variante in dem Fall, dass ein Tor mit Ziege geöffnet wird, die Gewinnwahrscheinlichkeit beim Wechseln 1/2 beträgt.
Zumindest der erste Text spricht von etwas anderem: Nämlich, dass der Moderator immer die letzte Tür öffnet, die eine Ziege enthält. Dass er einfach zufällig eine öffnet, eventuell auch die mit dem Auto, kann ich im Artikel nirgends finden. In diesem Fall (nehmen wir an, er trifft eine Ziege, sonst haben wir sowieso schon verloren) sagt die Intuition auch, dass die Erfolgswahrscheinlichkeit 2/3 beträgt, nicht 1/2.
Auf den zweiten Text kann ich nicht zugreifen. Aber da ich die Aussage nicht glaube, denke ich kaum, dass sie dort zu finden ist. Falls jemand wieder etwas einfügen möchte, dann bitte mit Seitenangabe. --46.127.232.215 12:31, 23. Feb. 2015 (CET)
- Diese Version kommt in beiden Quellen vor, bei der ersten auf S. 336 f. (S. 7 f. des Preprints) und bei der zweiten auf S. 285 f. Ich mache die Entfernung darum rückgängig. -- HilberTraum (d, m) 13:21, 23. Feb. 2015 (CET)
- Au ... Da war ich wohl blind (und vor allem voreilig), entschuldige ... Und meine Intuition war auch falsch, das sehe ich jetzt. Danke fürs Nachlesen. --46.127.232.215 19:25, 23. Feb. 2015 (CET)