跳转到内容

可計算數

本页使用了标题或全文手工转换
维基百科,自由的百科全书

这是本页的一个历史版本,由Wolfch留言 | 贡献2018年8月22日 (三) 14:06 首段编辑。这可能和当前版本存在着巨大的差异。

各种各样的
基本

延伸
其他

圓周率
自然對數的底
虛數單位
無限大

可計算數(computable numbers)是数学名詞,是指可用有限次、會結束的算法計算到任意精確度的实数

等效的定義可以用递归函数图灵机Λ演算等演算法的正式表示方式而得。可計算數形成實閉域,可以在許多數學應用上取代实数

相關條目

參考資料

  • Oliver Aberth 1968, Analysis in the Computable Number Field, Journal of the Association for Computing Machinery (JACM), vol 15, iss 2, pp 276–299. This paper describes the development of the calculus over the computable number field.
  • Errett Bishop and Douglas Bridges, Constructive Analysis, Springer, 1985, ISBN 0-387-15066-8
  • Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics, Oxford, 1987.
  • Jeffry L. Hirst, Representations of reals in reverse mathematics, Bulletin of the Polish Academy of Sciences, Mathematics, 55, (2007) 303–316.
  • 马文·闵斯基 1967, Computation: Finite and Infinite Machines, Prentice-Hall, Inc. Englewood Cliffs, NJ. No ISBN. Library of Congress Card Catalog No. 67-12342. His chapter §9 "The Computable Real Numbers" expands on the topics of this article.
  • E. Specker, "Nicht konstruktiv beweisbare Sätze der Analysis" J. Symbol. Logic, 14 (1949) pp. 145–158
  • Turing, A.M., On Computable Numbers, with an Application to the Entscheidungsproblem, Proceedings of the London Mathematical Society, 2 42 (1), 1936, 42 (1): 230–651937, doi:10.1112/plms/s2-42.1.230  (and Turing, A.M., On Computable Numbers, with an Application to the Entscheidungsproblem: A correction, Proceedings of the London Mathematical Society, 2 43 (6), 1938, 43 (6): 544–61937, doi:10.1112/plms/s2-43.6.544 ). Computable numbers (and Turing's a-machines) were introduced in this paper; the definition of computable numbers uses infinite decimal sequences.
  • Klaus Weihrauch 2000, Computable analysis, Texts in theoretical computer science, Springer, ISBN 3-540-66817-9. §1.3.2 introduces the definition by nested sequences of intervals converging to the singleton real. Other representations are discussed in §4.1.
  • Klaus Weihrauch, A simple introduction to computable analysis
  • H. Gordon Rice. "Recursive real numbers." Proceedings of the American Mathematical Society 5.5 (1954): 784-791.
  • V. Stoltenberg-Hansen, J. V. Tucker "Computable Rings and Fields" in Handbook of computability theory edited by E.R. Griffor. Elsevier 1999