Jump to content

Automorphic L-function

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, an automorphic L-function is a function L(s,π,r) of a complex variable s, associated to an automorphic representation π of a reductive group G over a global field and a finite-dimensional complex representation r of the Langlands dual group LG of G, generalizing the Dirichlet L-series of a Dirichlet character and the Mellin transform of a modular form. They were introduced by Langlands (1967, 1970, 1971).

Borel (1979) and Arthur & Gelbart (1991) gave surveys of automorphic L-functions.

Properties

Automorphic -functions should have the following properties (which have been proved in some cases but are still conjectural in other cases).

The L-function should be a product over the places of of local functions.

Here the automorphic representation is a tensor product of the representations of local groups.

The L-function is expected to have an analytic continuation as a meromorphic function of all complex , and satisfy a functional equation

where the factor is a product of "local constants"

almost all of which are 1.

General linear groups

Godement & Jacquet (1972) constructed the automorphic L-functions for general linear groups with r the standard representation (so-called standard L-functions) and verified analytic continuation and the functional equation, by using a generalization of the method in Tate's thesis. Ubiquitous in the Langlands Program are Rankin-Selberg products of representations of GL(m) and GL(n). The resulting Rankin-Selberg L-functions satisfy a number of analytic properties, their functional equation being first proved via the Langlands–Shahidi method.

In general, the Langlands functoriality conjectures imply that automorphic L-functions of a connected reductive group are equal to products of automorphic L-functions of general linear groups. A proof of Langlands functoriality would also lead towards a thorough understanding of the analytic properties of automorphic L-functions.

See also

References