Mathematical operation
In mathematics , the Mellin transform  is an integral transform  that may be regarded as the multiplicative  version of the two-sided Laplace transform . This integral transform is closely connected to the theory of Dirichlet series , and is
often used in number theory , mathematical statistics , and the theory of asymptotic expansions ; it is closely related to the Laplace transform  and the Fourier transform , and the theory of the gamma function  and allied special functions .
The Mellin transform of a complex-valued function f  defined on 
  
    
      
        
          
            R 
           
          
            + 
           
          
            × 
           
         
        = 
        ( 
        0 
        , 
        ∞ 
        ) 
       
     
    {\displaystyle \mathbf {R} _{+}^{\times }=(0,\infty )} 
   
 
  
    
      
        
          
            M 
           
         
        f 
       
     
    {\displaystyle {\mathcal {M}}f} 
   
 
  
    
      
        s 
       
     
    {\displaystyle s} 
   
 Fundamental strip  below) by
  
    
      
        
          
            M 
           
         
        
          { 
          f 
          } 
         
        ( 
        s 
        ) 
        = 
        φ 
        ( 
        s 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          x 
          
            s 
            − 
            1 
           
         
        f 
        ( 
        x 
        ) 
        d 
        x 
        = 
        
          ∫ 
          
            
              
                R 
               
              
                + 
               
              
                × 
               
             
           
         
        f 
        ( 
        x 
        ) 
        
          x 
          
            s 
           
         
        
          
            
              d 
              x 
             
            x 
           
         
        . 
       
     
    {\displaystyle {\mathcal {M}}\left\{f\right\}(s)=\varphi (s)=\int _{0}^{\infty }x^{s-1}f(x)\,dx=\int _{\mathbf {R} _{+}^{\times }}f(x)x^{s}{\frac {dx}{x}}.} 
   
 
  
    
      
        d 
        x 
        
          / 
         
        x 
       
     
    {\displaystyle dx/x} 
   
 Haar measure  on the multiplicative group 
  
    
      
        
          
            R 
           
          
            + 
           
          
            × 
           
         
       
     
    {\displaystyle \mathbf {R} _{+}^{\times }} 
   
 
  
    
      
        x 
        ↦ 
        
          x 
          
            s 
           
         
       
     
    {\displaystyle x\mapsto x^{s}} 
   
 multiplicative character .
The inverse transform is 
  
    
      
        
          
            
              M 
             
           
          
            − 
            1 
           
         
        
          { 
          φ 
          } 
         
        ( 
        x 
        ) 
        = 
        f 
        ( 
        x 
        ) 
        = 
        
          
            1 
            
              2 
              π 
              i 
             
           
         
        
          ∫ 
          
            c 
            − 
            i 
            ∞ 
           
          
            c 
            + 
            i 
            ∞ 
           
         
        
          x 
          
            − 
            s 
           
         
        φ 
        ( 
        s 
        ) 
        d 
        s 
        . 
       
     
    {\displaystyle {\mathcal {M}}^{-1}\left\{\varphi \right\}(x)=f(x)={\frac {1}{2\pi i}}\int _{c-i\infty }^{c+i\infty }x^{-s}\varphi (s)\,ds.} 
   
 line integral  taken over a vertical line in the complex plane , whose real part c  need only satisfy a mild lower bound. Conditions under which this inversion is valid are given in the Mellin inversion theorem .
The transform is named after the Finnish  mathematician Hjalmar Mellin , who introduced it in a paper published 1897 in Acta Societatis Scientiarum Fennicae. [ 1] 
The two-sided Laplace transform  may be defined in terms of the Mellin transform by
  
    
      
        
          
            B 
           
         
        
          { 
          f 
          } 
         
        ( 
        s 
        ) 
        = 
        
          
            M 
           
         
        
          { 
          
            f 
            ( 
            − 
            ln 
             
            x 
            ) 
           
          } 
         
        ( 
        s 
        ) 
       
     
    {\displaystyle {\mathcal {B}}\left\{f\right\}(s)={\mathcal {M}}\left\{f(-\ln x)\right\}(s)} 
   
 
  
    
      
        
          
            M 
           
         
        
          { 
          f 
          } 
         
        ( 
        s 
        ) 
        = 
        
          
            B 
           
         
        
          { 
          
            f 
            ( 
            
              e 
              
                − 
                x 
               
             
            ) 
           
          } 
         
        ( 
        s 
        ) 
        . 
       
     
    {\displaystyle {\mathcal {M}}\left\{f\right\}(s)={\mathcal {B}}\left\{f(e^{-x})\right\}(s).} 
   
 
The Mellin transform may be thought of as integrating using a kernel xs   with respect to the multiplicative Haar measure , 
  
    
      
        
          
            
              d 
              x 
             
            x 
           
         
       
     
    {\textstyle {\frac {dx}{x}}} 
   
 
  
    
      
        x 
        ↦ 
        a 
        x 
       
     
    {\displaystyle x\mapsto ax} 
   
 
  
    
      
        
          
            
              d 
              ( 
              a 
              x 
              ) 
             
            
              a 
              x 
             
           
         
        = 
        
          
            
              d 
              x 
             
            x 
           
         
        ; 
       
     
    {\textstyle {\frac {d(ax)}{ax}}={\frac {dx}{x}};} 
   
 
  
    
      
        d 
        x 
       
     
    {\displaystyle dx} 
   
 
  
    
      
        d 
        ( 
        x 
        + 
        a 
        ) 
        = 
        d 
        x 
        . 
       
     
    {\displaystyle d(x+a)=dx\,.} 
   
 
We also may define the Fourier transform  in terms of the Mellin transform and vice versa; in terms of the Mellin transform and of the two-sided Laplace transform defined above
  
    
      
        
          { 
          
            
              
                F 
               
             
            f 
           
          } 
         
        ( 
        − 
        s 
        ) 
        = 
        
          { 
          
            
              
                B 
               
             
            f 
           
          } 
         
        ( 
        − 
        i 
        s 
        ) 
        = 
        
          { 
          
            
              
                M 
               
             
            f 
            ( 
            − 
            ln 
             
            x 
            ) 
           
          } 
         
        ( 
        − 
        i 
        s 
        ) 
          
        . 
       
     
    {\displaystyle \left\{{\mathcal {F}}f\right\}(-s)=\left\{{\mathcal {B}}f\right\}(-is)=\left\{{\mathcal {M}}f(-\ln x)\right\}(-is)\ .} 
   
 
  
    
      
        
          { 
          
            
              
                M 
               
             
            f 
           
          } 
         
        ( 
        s 
        ) 
        = 
        
          { 
          
            
              
                B 
               
             
            f 
            ( 
            
              e 
              
                − 
                x 
               
             
            ) 
           
          } 
         
        ( 
        s 
        ) 
        = 
        
          { 
          
            
              
                F 
               
             
            f 
            ( 
            
              e 
              
                − 
                x 
               
             
            ) 
           
          } 
         
        ( 
        − 
        i 
        s 
        ) 
          
        . 
       
     
    {\displaystyle \left\{{\mathcal {M}}f\right\}(s)=\left\{{\mathcal {B}}f(e^{-x})\right\}(s)=\left\{{\mathcal {F}}f(e^{-x})\right\}(-is)\ .} 
   
 
The Mellin transform also connects the Newton series  or binomial transform  together with the Poisson generating function , by means of the Poisson–Mellin–Newton cycle .
The Mellin transform may also be viewed as the Gelfand transform  for the convolution algebra  of the locally compact abelian group  of positive real numbers with multiplication.
[ edit ] 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          e 
          
            − 
            x 
           
         
       
     
    {\displaystyle f(x)=e^{-x}} 
   
 
  
    
      
        Γ 
        ( 
        s 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          x 
          
            s 
            − 
            1 
           
         
        
          e 
          
            − 
            x 
           
         
        d 
        x 
       
     
    {\displaystyle \Gamma (s)=\int _{0}^{\infty }x^{s-1}e^{-x}dx} 
   
 
  
    
      
        Γ 
        ( 
        s 
        ) 
       
     
    {\displaystyle \Gamma (s)} 
   
 gamma function .  
  
    
      
        Γ 
        ( 
        s 
        ) 
       
     
    {\displaystyle \Gamma (s)} 
   
 meromorphic function  with simple poles  at 
  
    
      
        z 
        = 
        0 
        , 
        − 
        1 
        , 
        − 
        2 
        , 
        … 
       
     
    {\displaystyle z=0,-1,-2,\dots } 
   
 [ 2] 
  
    
      
        Γ 
        ( 
        s 
        ) 
       
     
    {\displaystyle \Gamma (s)} 
   
 
  
    
      
        ℜ 
        ( 
        s 
        ) 
        > 
        0 
       
     
    {\displaystyle \Re (s)>0} 
   
 
  
    
      
        c 
        > 
        0 
       
     
    {\displaystyle c>0} 
   
 
  
    
      
        
          z 
          
            − 
            s 
           
         
       
     
    {\displaystyle z^{-s}} 
   
 principal branch , the inverse transform gives
  
    
      
        
          e 
          
            − 
            z 
           
         
        = 
        
          
            1 
            
              2 
              π 
              i 
             
           
         
        
          ∫ 
          
            c 
            − 
            i 
            ∞ 
           
          
            c 
            + 
            i 
            ∞ 
           
         
        Γ 
        ( 
        s 
        ) 
        
          z 
          
            − 
            s 
           
         
        d 
        s 
        . 
       
     
    {\displaystyle e^{-z}={\frac {1}{2\pi i}}\int _{c-i\infty }^{c+i\infty }\Gamma (s)z^{-s}\;ds.} 
   
 
This integral is known as the Cahen–Mellin integral.[ 3] 
Polynomial functions [ edit ] Since 
  
    
      
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          x 
          
            a 
           
         
        d 
        x 
       
     
    {\textstyle \int _{0}^{\infty }x^{a}dx} 
   
 
  
    
      
        a 
        ∈ 
        
          R 
         
       
     
    {\displaystyle a\in \mathbb {R} } 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  
                    x 
                    
                      a 
                     
                   
                 
                
                  x 
                  < 
                  1 
                  , 
                 
               
              
                
                  0 
                 
                
                  x 
                  > 
                  1 
                  , 
                 
               
             
             
         
       
     
    {\displaystyle f(x)={\begin{cases}x^{a}&x<1,\\0&x>1,\end{cases}}} 
   
 
  
    
      
        
          
            M 
           
         
        f 
        ( 
        s 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            1 
           
         
        
          x 
          
            s 
            − 
            1 
           
         
        
          x 
          
            a 
           
         
        d 
        x 
        = 
        
          ∫ 
          
            0 
           
          
            1 
           
         
        
          x 
          
            s 
            + 
            a 
            − 
            1 
           
         
        d 
        x 
        = 
        
          
            1 
            
              s 
              + 
              a 
             
           
         
        . 
       
     
    {\displaystyle {\mathcal {M}}f(s)=\int _{0}^{1}x^{s-1}x^{a}dx=\int _{0}^{1}x^{s+a-1}dx={\frac {1}{s+a}}.} 
   
 
Thus 
  
    
      
        
          
            M 
           
         
        f 
        ( 
        s 
        ) 
       
     
    {\displaystyle {\mathcal {M}}f(s)} 
   
 
  
    
      
        s 
        = 
        − 
        a 
       
     
    {\displaystyle s=-a} 
   
 
  
    
      
        ℜ 
        ( 
        s 
        ) 
        > 
        − 
        a 
       
     
    {\displaystyle \Re (s)>-a} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  0 
                 
                
                  x 
                  < 
                  1 
                  , 
                 
               
              
                
                  
                    x 
                    
                      b 
                     
                   
                 
                
                  x 
                  > 
                  1 
                  , 
                 
               
             
             
         
       
     
    {\displaystyle f(x)={\begin{cases}0&x<1,\\x^{b}&x>1,\end{cases}}} 
   
 
  
    
      
        
          
            M 
           
         
        f 
        ( 
        s 
        ) 
        = 
        
          ∫ 
          
            1 
           
          
            ∞ 
           
         
        
          x 
          
            s 
            − 
            1 
           
         
        
          x 
          
            b 
           
         
        d 
        x 
        = 
        
          ∫ 
          
            1 
           
          
            ∞ 
           
         
        
          x 
          
            s 
            + 
            b 
            − 
            1 
           
         
        d 
        x 
        = 
        − 
        
          
            1 
            
              s 
              + 
              b 
             
           
         
        . 
       
     
    {\displaystyle {\mathcal {M}}f(s)=\int _{1}^{\infty }x^{s-1}x^{b}dx=\int _{1}^{\infty }x^{s+b-1}dx=-{\frac {1}{s+b}}.} 
   
 
  
    
      
        
          
            M 
           
         
        f 
        ( 
        s 
        ) 
       
     
    {\displaystyle {\mathcal {M}}f(s)} 
   
 
  
    
      
        s 
        = 
        − 
        b 
       
     
    {\displaystyle s=-b} 
   
 
  
    
      
        ℜ 
        ( 
        s 
        ) 
        < 
        − 
        b 
       
     
    {\displaystyle \Re (s)<-b} 
   
 
Exponential functions [ edit ] For 
  
    
      
        p 
        > 
        0 
       
     
    {\displaystyle p>0} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          e 
          
            − 
            p 
            x 
           
         
       
     
    {\displaystyle f(x)=e^{-px}} 
   
 
  
    
      
        
          
            M 
           
         
        f 
        ( 
        s 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          x 
          
            s 
           
         
        
          e 
          
            − 
            p 
            x 
           
         
        
          
            
              d 
              x 
             
            x 
           
         
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            ( 
            
              
                u 
                p 
               
             
            ) 
           
          
            s 
           
         
        
          e 
          
            − 
            u 
           
         
        
          
            
              d 
              u 
             
            u 
           
         
        = 
        
          
            1 
            
              p 
              
                s 
               
             
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          u 
          
            s 
           
         
        
          e 
          
            − 
            u 
           
         
        
          
            
              d 
              u 
             
            u 
           
         
        = 
        
          
            1 
            
              p 
              
                s 
               
             
           
         
        Γ 
        ( 
        s 
        ) 
        . 
       
     
    {\displaystyle {\mathcal {M}}f(s)=\int _{0}^{\infty }x^{s}e^{-px}{\frac {dx}{x}}=\int _{0}^{\infty }\left({\frac {u}{p}}\right)^{s}e^{-u}{\frac {du}{u}}={\frac {1}{p^{s}}}\int _{0}^{\infty }u^{s}e^{-u}{\frac {du}{u}}={\frac {1}{p^{s}}}\Gamma (s).} 
   
 
It is possible to use the Mellin transform to produce one of the fundamental formulas for the Riemann zeta function , 
  
    
      
        ζ 
        ( 
        s 
        ) 
       
     
    {\displaystyle \zeta (s)} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            1 
            
              
                e 
                
                  x 
                 
               
              − 
              1 
             
           
         
       
     
    {\textstyle f(x)={\frac {1}{e^{x}-1}}} 
   
 
  
    
      
        
          
            
              
                
                  
                    M 
                   
                 
                f 
                ( 
                s 
                ) 
               
              
                = 
                
                  ∫ 
                  
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  x 
                  
                    s 
                    − 
                    1 
                   
                 
                
                  
                    1 
                    
                      
                        e 
                        
                          x 
                         
                       
                      − 
                      1 
                     
                   
                 
                d 
                x 
               
              
                = 
                
                  ∫ 
                  
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  x 
                  
                    s 
                    − 
                    1 
                   
                 
                
                  
                    
                      e 
                      
                        − 
                        x 
                       
                     
                    
                      1 
                      − 
                      
                        e 
                        
                          − 
                          x 
                         
                       
                     
                   
                 
                d 
                x 
               
             
            
              
                = 
                
                  ∫ 
                  
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  x 
                  
                    s 
                    − 
                    1 
                   
                 
                
                  ∑ 
                  
                    n 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  e 
                  
                    − 
                    n 
                    x 
                   
                 
                d 
                x 
               
              
                = 
                
                  ∑ 
                  
                    n 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  ∫ 
                  
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  x 
                  
                    s 
                   
                 
                
                  e 
                  
                    − 
                    n 
                    x 
                   
                 
                
                  
                    
                      d 
                      x 
                     
                    x 
                   
                 
               
             
            
              
                = 
                
                  ∑ 
                  
                    n 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    1 
                    
                      n 
                      
                        s 
                       
                     
                   
                 
                Γ 
                ( 
                s 
                ) 
                = 
                Γ 
                ( 
                s 
                ) 
                ζ 
                ( 
                s 
                ) 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{alignedat}{3}{\mathcal {M}}f(s)&=\int _{0}^{\infty }x^{s-1}{\frac {1}{e^{x}-1}}dx&&=\int _{0}^{\infty }x^{s-1}{\frac {e^{-x}}{1-e^{-x}}}dx\\&=\int _{0}^{\infty }x^{s-1}\sum _{n=1}^{\infty }e^{-nx}dx&&=\sum _{n=1}^{\infty }\int _{0}^{\infty }x^{s}e^{-nx}{\frac {dx}{x}}\\&=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}\Gamma (s)=\Gamma (s)\zeta (s).\end{alignedat}}} 
   
 
  
    
      
        ζ 
        ( 
        s 
        ) 
        = 
        
          
            1 
            
              Γ 
              ( 
              s 
              ) 
             
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          x 
          
            s 
            − 
            1 
           
         
        
          
            1 
            
              
                e 
                
                  x 
                 
               
              − 
              1 
             
           
         
        d 
        x 
        . 
       
     
    {\displaystyle \zeta (s)={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }x^{s-1}{\frac {1}{e^{x}-1}}dx.} 
   
 
Generalized Gaussian [ edit ] For 
  
    
      
        p 
        > 
        0 
       
     
    {\displaystyle p>0} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          e 
          
            − 
            
              x 
              
                p 
               
             
           
         
       
     
    {\displaystyle f(x)=e^{-x^{p}}} 
   
 
  
    
      
        f 
       
     
    {\displaystyle f} 
   
 generalized Gaussian distribution  without the scaling factor.)  Then
  
    
      
        
          
            
              
                
                  
                    M 
                   
                 
                f 
                ( 
                s 
                ) 
               
              
                = 
                
                  ∫ 
                  
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  x 
                  
                    s 
                    − 
                    1 
                   
                 
                
                  e 
                  
                    − 
                    
                      x 
                      
                        p 
                       
                     
                   
                 
                d 
                x 
               
              
                = 
                
                  ∫ 
                  
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  x 
                  
                    p 
                    − 
                    1 
                   
                 
                
                  x 
                  
                    s 
                    − 
                    p 
                   
                 
                
                  e 
                  
                    − 
                    
                      x 
                      
                        p 
                       
                     
                   
                 
                d 
                x 
               
             
            
              
                = 
                
                  ∫ 
                  
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  x 
                  
                    p 
                    − 
                    1 
                   
                 
                ( 
                
                  x 
                  
                    p 
                   
                 
                
                  ) 
                  
                    s 
                    
                      / 
                     
                    p 
                    − 
                    1 
                   
                 
                
                  e 
                  
                    − 
                    
                      x 
                      
                        p 
                       
                     
                   
                 
                d 
                x 
               
              
                = 
                
                  
                    1 
                    p 
                   
                 
                
                  ∫ 
                  
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  u 
                  
                    s 
                    
                      / 
                     
                    p 
                    − 
                    1 
                   
                 
                
                  e 
                  
                    − 
                    u 
                   
                 
                d 
                u 
               
             
            
              
                = 
                
                  
                    
                      Γ 
                      ( 
                      s 
                      
                        / 
                       
                      p 
                      ) 
                     
                    p 
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{alignedat}{3}{\mathcal {M}}f(s)&=\int _{0}^{\infty }x^{s-1}e^{-x^{p}}dx&&=\int _{0}^{\infty }x^{p-1}x^{s-p}e^{-x^{p}}dx\\&=\int _{0}^{\infty }x^{p-1}(x^{p})^{s/p-1}e^{-x^{p}}dx&&={\frac {1}{p}}\int _{0}^{\infty }u^{s/p-1}e^{-u}du\\&={\frac {\Gamma (s/p)}{p}}.\end{alignedat}}} 
   
 
  
    
      
        s 
        = 
        1 
       
     
    {\displaystyle s=1} 
   
 
  
    
      
        Γ 
        
          ( 
          
            1 
            + 
            
              
                1 
                p 
               
             
           
          ) 
         
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          e 
          
            − 
            
              x 
              
                p 
               
             
           
         
        d 
        x 
        . 
       
     
    {\displaystyle \Gamma \left(1+{\frac {1}{p}}\right)=\int _{0}^{\infty }e^{-x^{p}}dx.} 
   
 
Power series and Dirichlet series [ edit ] Generally, assuming the necessary convergence, we can connect Dirichlet series and power series 
  
    
      
        F 
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              a 
              
                n 
               
             
            
              n 
              
                s 
               
             
           
         
        , 
        f 
        ( 
        z 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          a 
          
            n 
           
         
        
          z 
          
            n 
           
         
       
     
    {\displaystyle F(s)=\sum \limits _{n=1}^{\infty }{\frac {a_{n}}{n^{s}}},\quad f(z)=\sum \limits _{n=1}^{\infty }a_{n}z^{n}} 
   
 [ 4] 
  
    
      
        Γ 
        ( 
        s 
        ) 
        F 
        ( 
        s 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          x 
          
            s 
            − 
            1 
           
         
        f 
        ( 
        
          e 
          
            − 
            x 
           
         
        ) 
        d 
        x 
       
     
    {\displaystyle \Gamma (s)F(s)=\int _{0}^{\infty }x^{s-1}f(e^{-x})dx} 
   
 
For 
  
    
      
        α 
        , 
        β 
        ∈ 
        
          R 
         
       
     
    {\displaystyle \alpha ,\beta \in \mathbb {R} } 
   
 
  
    
      
        ⟨ 
        α 
        , 
        β 
        ⟩ 
       
     
    {\displaystyle \langle \alpha ,\beta \rangle } 
   
 
  
    
      
        s 
        ∈ 
        
          C 
         
       
     
    {\displaystyle s\in \mathbb {C} } 
   
 
  
    
      
        s 
        = 
        σ 
        + 
        i 
        t 
       
     
    {\displaystyle s=\sigma +it} 
   
 
  
    
      
        α 
        < 
        σ 
        < 
        β 
        . 
       
     
    {\displaystyle \alpha <\sigma <\beta .} 
   
 fundamental strip  of 
  
    
      
        
          
            M 
           
         
        f 
        ( 
        s 
        ) 
       
     
    {\displaystyle {\mathcal {M}}f(s)} 
   
 
  
    
      
        a 
        > 
        b 
       
     
    {\displaystyle a>b} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          
            { 
            
              
                
                  
                    x 
                    
                      a 
                     
                   
                 
                
                  x 
                  < 
                  1 
                  , 
                 
               
              
                
                  
                    x 
                    
                      b 
                     
                   
                 
                
                  x 
                  > 
                  1 
                  , 
                 
               
             
             
         
       
     
    {\displaystyle f(x)={\begin{cases}x^{a}&x<1,\\x^{b}&x>1,\end{cases}}} 
   
 
  
    
      
        ⟨ 
        − 
        a 
        , 
        − 
        b 
        ⟩ 
        . 
       
     
    {\displaystyle \langle -a,-b\rangle .} 
   
 
  
    
      
        x 
        → 
        
          0 
          
            + 
           
         
       
     
    {\displaystyle x\to 0^{+}} 
   
 
  
    
      
        x 
        → 
        + 
        ∞ 
       
     
    {\displaystyle x\to +\infty } 
   
 Big O notation , if 
  
    
      
        f 
       
     
    {\displaystyle f} 
   
 
  
    
      
        O 
        ( 
        
          x 
          
            a 
           
         
        ) 
       
     
    {\displaystyle O(x^{a})} 
   
 
  
    
      
        x 
        → 
        
          0 
          
            + 
           
         
       
     
    {\displaystyle x\to 0^{+}} 
   
 
  
    
      
        O 
        ( 
        
          x 
          
            b 
           
         
        ) 
       
     
    {\displaystyle O(x^{b})} 
   
 
  
    
      
        x 
        → 
        + 
        ∞ 
        , 
       
     
    {\displaystyle x\to +\infty ,} 
   
 
  
    
      
        
          
            M 
           
         
        f 
        ( 
        s 
        ) 
       
     
    {\displaystyle {\mathcal {M}}f(s)} 
   
 
  
    
      
        ⟨ 
        − 
        a 
        , 
        − 
        b 
        ⟩ 
        . 
       
     
    {\displaystyle \langle -a,-b\rangle .} 
   
 
An application of this can be seen in the gamma function, 
  
    
      
        Γ 
        ( 
        s 
        ) 
        . 
       
     
    {\displaystyle \Gamma (s).} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          e 
          
            − 
            x 
           
         
       
     
    {\displaystyle f(x)=e^{-x}} 
   
 
  
    
      
        O 
        ( 
        
          x 
          
            0 
           
         
        ) 
       
     
    {\displaystyle O(x^{0})} 
   
 
  
    
      
        x 
        → 
        
          0 
          
            + 
           
         
       
     
    {\displaystyle x\to 0^{+}} 
   
 
  
    
      
        O 
        ( 
        
          x 
          
            k 
           
         
        ) 
       
     
    {\displaystyle O(x^{k})} 
   
 
  
    
      
        k 
        , 
       
     
    {\displaystyle k,} 
   
 
  
    
      
        Γ 
        ( 
        s 
        ) 
        = 
        
          
            M 
           
         
        f 
        ( 
        s 
        ) 
       
     
    {\displaystyle \Gamma (s)={\mathcal {M}}f(s)} 
   
 
  
    
      
        ⟨ 
        0 
        , 
        + 
        ∞ 
        ⟩ 
        , 
       
     
    {\displaystyle \langle 0,+\infty \rangle ,} 
   
 
  
    
      
        Γ 
        ( 
        s 
        ) 
       
     
    {\displaystyle \Gamma (s)} 
   
 
  
    
      
        ℜ 
        ( 
        s 
        ) 
        > 
        0. 
       
     
    {\displaystyle \Re (s)>0.} 
   
 
The properties in this table may be found in Bracewell (2000)  and Erdélyi (1954) .
Properties of the Mellin transform
 
Function 
Mellin transform 
Fundamental strip 
Comments
  
  
    
      
        f 
        ( 
        x 
        ) 
       
     
    {\displaystyle f(x)} 
   
 
  
    
      
        
          
            
              f 
              ~ 
             
           
         
        ( 
        s 
        ) 
        = 
        { 
        
          
            M 
           
         
        f 
        } 
        ( 
        s 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        f 
        ( 
        x 
        ) 
        
          x 
          
            s 
           
         
        
          
            
              d 
              x 
             
            x 
           
         
       
     
    {\displaystyle {\tilde {f}}(s)=\{{\mathcal {M}}f\}(s)=\int _{0}^{\infty }f(x)x^{s}{\frac {dx}{x}}} 
   
 
  
    
      
        α 
        < 
        ℜ 
        s 
        < 
        β 
       
     
    {\displaystyle \alpha <\Re s<\beta } 
   
 Definition
  
  
    
      
        
          x 
          
            ν 
           
         
        f 
        ( 
        x 
        ) 
       
     
    {\displaystyle x^{\nu }\,f(x)} 
   
 
  
    
      
        
          
            
              f 
              ~ 
             
           
         
        ( 
        s 
        + 
        ν 
        ) 
       
     
    {\displaystyle {\tilde {f}}(s+\nu )} 
   
 
  
    
      
        α 
        − 
        ℜ 
        ν 
        < 
        ℜ 
        s 
        < 
        β 
        − 
        ℜ 
        ν 
       
     
    {\displaystyle \alpha -\Re \nu <\Re s<\beta -\Re \nu } 
   
 
  
  
    
      
        f 
        ( 
        
          x 
          
            ν 
           
         
        ) 
       
     
    {\displaystyle f(x^{\nu })} 
   
 
  
    
      
        
          
            1 
            
              
                | 
               
              ν 
              
                | 
               
             
           
         
        
          
            
              f 
              ~ 
             
           
         
        
          ( 
          
            
              s 
              ν 
             
           
          ) 
         
       
     
    {\displaystyle {\frac {1}{|\nu |}}\,{\tilde {f}}\left({\frac {s}{\nu }}\right)} 
   
 
  
    
      
        α 
        < 
        
          ν 
          
            − 
            1 
           
         
        ℜ 
        s 
        < 
        β 
       
     
    {\displaystyle \alpha <\nu ^{-1}\,\Re s<\beta } 
   
 
  
    
      
        ν 
        ∈ 
        
          R 
         
        , 
        ν 
        ≠ 
        0 
       
     
    {\displaystyle \nu \in \mathbb {R} ,\;\nu \neq 0} 
   
  
  
    
      
        f 
        ( 
        
          x 
          
            − 
            1 
           
         
        ) 
       
     
    {\displaystyle f(x^{-1})} 
   
 
  
    
      
        
          
            
              f 
              ~ 
             
           
         
        ( 
        − 
        s 
        ) 
       
     
    {\displaystyle {\tilde {f}}(-s)} 
   
 
  
    
      
        − 
        β 
        < 
        ℜ 
        s 
        < 
        − 
        α 
       
     
    {\displaystyle -\beta <\Re s<-\alpha } 
   
 
  
  
    
      
        
          x 
          
            − 
            1 
           
         
        f 
        ( 
        
          x 
          
            − 
            1 
           
         
        ) 
       
     
    {\displaystyle x^{-1}\,f(x^{-1})} 
   
 
  
    
      
        
          
            
              f 
              ~ 
             
           
         
        ( 
        1 
        − 
        s 
        ) 
       
     
    {\displaystyle {\tilde {f}}(1-s)} 
   
 
  
    
      
        1 
        − 
        β 
        < 
        ℜ 
        s 
        < 
        1 
        − 
        α 
       
     
    {\displaystyle 1-\beta <\Re s<1-\alpha } 
   
 Involution
  
  
    
      
        
          
            
              f 
              ( 
              x 
              ) 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {f(x)}}} 
   
 
  
    
      
        
          
            
              
                
                  
                    f 
                    ~ 
                   
                 
               
              ( 
              
                
                  s 
                  ¯ 
                 
               
              ) 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {{\tilde {f}}({\overline {s}})}}} 
   
 
  
    
      
        α 
        < 
        ℜ 
        s 
        < 
        β 
       
     
    {\displaystyle \alpha <\Re s<\beta } 
   
 Here 
  
    
      
        
          
            z 
            ¯ 
           
         
       
     
    {\displaystyle {\overline {z}}} 
   
 
  
    
      
        z 
       
     
    {\displaystyle z} 
   
   
  
    
      
        f 
        ( 
        ν 
        x 
        ) 
       
     
    {\displaystyle f(\nu x)} 
   
 
  
    
      
        
          ν 
          
            − 
            s 
           
         
        
          
            
              f 
              ~ 
             
           
         
        ( 
        s 
        ) 
       
     
    {\displaystyle \nu ^{-s}{\tilde {f}}(s)} 
   
 
  
    
      
        α 
        < 
        ℜ 
        s 
        < 
        β 
       
     
    {\displaystyle \alpha <\Re s<\beta } 
   
 
  
    
      
        ν 
        > 
        0 
       
     
    {\displaystyle \nu >0} 
   
  
  
    
      
        f 
        ( 
        x 
        ) 
        ln 
         
        x 
       
     
    {\displaystyle f(x)\,\ln x} 
   
 
  
    
      
        
          
            
              
                f 
                ~ 
               
             
           
          ′ 
         
        ( 
        s 
        ) 
       
     
    {\displaystyle {\tilde {f}}'(s)} 
   
 
  
    
      
        α 
        < 
        ℜ 
        s 
        < 
        β 
       
     
    {\displaystyle \alpha <\Re s<\beta } 
   
 
  
  
    
      
        
          f 
          ′ 
         
        ( 
        x 
        ) 
       
     
    {\displaystyle f'(x)} 
   
 
  
    
      
        − 
        ( 
        s 
        − 
        1 
        ) 
        
          
            
              f 
              ~ 
             
           
         
        ( 
        s 
        − 
        1 
        ) 
       
     
    {\displaystyle -(s-1)\,{\tilde {f}}(s-1)} 
   
 
  
    
      
        α 
        + 
        1 
        < 
        ℜ 
        s 
        < 
        β 
        + 
        1 
       
     
    {\displaystyle \alpha +1<\Re s<\beta +1} 
   
 The domain shift is conditional and requires evaluation against specific convergence behavior.
  
  
    
      
        
          
            ( 
            
              
                d 
                
                  d 
                  x 
                 
               
             
            ) 
           
          
            n 
           
         
        f 
        ( 
        x 
        ) 
       
     
    {\displaystyle \left({\frac {d}{dx}}\right)^{n}\,f(x)} 
   
 
  
    
      
        ( 
        − 
        1 
        
          ) 
          
            n 
           
         
        
          
            
              Γ 
              ( 
              s 
              ) 
             
            
              Γ 
              ( 
              s 
              − 
              n 
              ) 
             
           
         
        
          
            
              f 
              ~ 
             
           
         
        ( 
        s 
        − 
        n 
        ) 
       
     
    {\displaystyle (-1)^{n}\,{\frac {\Gamma (s)}{\Gamma (s-n)}}{\tilde {f}}(s-n)} 
   
 
  
    
      
        α 
        + 
        n 
        < 
        ℜ 
        s 
        < 
        β 
        + 
        n 
       
     
    {\displaystyle \alpha +n<\Re s<\beta +n} 
   
 
  
  
    
      
        x 
        
          f 
          ′ 
         
        ( 
        x 
        ) 
       
     
    {\displaystyle x\,f'(x)} 
   
 
  
    
      
        − 
        s 
        
          
            
              f 
              ~ 
             
           
         
        ( 
        s 
        ) 
       
     
    {\displaystyle -s\,{\tilde {f}}(s)} 
   
 
  
    
      
        α 
        < 
        ℜ 
        s 
        < 
        β 
       
     
    {\displaystyle \alpha <\Re s<\beta } 
   
 
  
  
    
      
        
          
            ( 
            
              x 
              
                
                  d 
                  
                    d 
                    x 
                   
                 
               
             
            ) 
           
          
            n 
           
         
        f 
        ( 
        x 
        ) 
       
     
    {\displaystyle \left(x\,{\frac {d}{dx}}\right)^{n}\,f(x)} 
   
 
  
    
      
        ( 
        − 
        s 
        
          ) 
          
            n 
           
         
        
          
            
              f 
              ~ 
             
           
         
        ( 
        s 
        ) 
       
     
    {\displaystyle (-s)^{n}{\tilde {f}}(s)} 
   
 
  
    
      
        α 
        < 
        ℜ 
        s 
        < 
        β 
       
     
    {\displaystyle \alpha <\Re s<\beta } 
   
 
  
  
    
      
        
          
            ( 
            
              
                
                  d 
                  
                    d 
                    x 
                   
                 
               
              x 
             
            ) 
           
          
            n 
           
         
        f 
        ( 
        x 
        ) 
       
     
    {\displaystyle \left({\frac {d}{dx}}\,x\right)^{n}\,f(x)} 
   
 
  
    
      
        ( 
        1 
        − 
        s 
        
          ) 
          
            n 
           
         
        
          
            
              f 
              ~ 
             
           
         
        ( 
        s 
        ) 
       
     
    {\displaystyle (1-s)^{n}{\tilde {f}}(s)} 
   
 
  
    
      
        α 
        < 
        ℜ 
        s 
        < 
        β 
       
     
    {\displaystyle \alpha <\Re s<\beta } 
   
 
  
  
    
      
        
          ∫ 
          
            0 
           
          
            x 
           
         
        f 
        ( 
        y 
        ) 
        d 
        y 
       
     
    {\displaystyle \int _{0}^{x}f(y)\,dy} 
   
 
  
    
      
        − 
        
          s 
          
            − 
            1 
           
         
        
          
            
              f 
              ~ 
             
           
         
        ( 
        s 
        + 
        1 
        ) 
       
     
    {\displaystyle -s^{-1}\,{\tilde {f}}(s+1)} 
   
 
  
    
      
        α 
        − 
        1 
        < 
        ℜ 
        s 
        < 
        min 
        ( 
        β 
        − 
        1 
        , 
        0 
        ) 
       
     
    {\displaystyle \alpha -1<\Re s<\min(\beta -1,0)} 
   
 Valid only if the integral exists.
  
  
    
      
        
          ∫ 
          
            x 
           
          
            ∞ 
           
         
        f 
        ( 
        y 
        ) 
        d 
        y 
       
     
    {\displaystyle \int _{x}^{\infty }f(y)\,dy} 
   
 
  
    
      
        
          s 
          
            − 
            1 
           
         
        
          
            
              f 
              ~ 
             
           
         
        ( 
        s 
        + 
        1 
        ) 
       
     
    {\displaystyle s^{-1}\,{\tilde {f}}(s+1)} 
   
 
  
    
      
        max 
        ( 
        α 
        − 
        1 
        , 
        0 
        ) 
        < 
        ℜ 
        s 
        < 
        β 
        − 
        1 
       
     
    {\displaystyle \max(\alpha -1,0)<\Re s<\beta -1} 
   
 Valid only if the integral exists.
  
  
    
      
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          f 
          
            1 
           
         
        
          ( 
          
            
              x 
              y 
             
           
          ) 
         
        
          f 
          
            2 
           
         
        ( 
        y 
        ) 
        
          
            
              d 
              y 
             
            y 
           
         
       
     
    {\displaystyle \int _{0}^{\infty }f_{1}\left({\frac {x}{y}}\right)\,f_{2}(y)\,{\frac {dy}{y}}} 
   
 
  
    
      
        
          
            
              
                f 
                ~ 
               
             
           
          
            1 
           
         
        ( 
        s 
        ) 
        
          
            
              
                f 
                ~ 
               
             
           
          
            2 
           
         
        ( 
        s 
        ) 
       
     
    {\displaystyle {\tilde {f}}_{1}(s)\,{\tilde {f}}_{2}(s)} 
   
 
  
    
      
        max 
        ( 
        
          α 
          
            1 
           
         
        , 
        
          α 
          
            2 
           
         
        ) 
        < 
        ℜ 
        s 
        < 
        min 
        ( 
        
          β 
          
            1 
           
         
        , 
        
          β 
          
            2 
           
         
        ) 
       
     
    {\displaystyle \max(\alpha _{1},\alpha _{2})<\Re s<\min(\beta _{1},\beta _{2})} 
   
 Multiplicative convolution
  
  
    
      
        
          x 
          
            μ 
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          y 
          
            ν 
           
         
        
          f 
          
            1 
           
         
        
          ( 
          
            
              x 
              y 
             
           
          ) 
         
        
          f 
          
            2 
           
         
        ( 
        y 
        ) 
        d 
        y 
       
     
    {\displaystyle x^{\mu }\int _{0}^{\infty }y^{\nu }\,f_{1}\left({\frac {x}{y}}\right)\,f_{2}(y)\,dy} 
   
 
  
    
      
        
          
            
              
                f 
                ~ 
               
             
           
          
            1 
           
         
        ( 
        s 
        + 
        μ 
        ) 
        
          
            
              
                f 
                ~ 
               
             
           
          
            2 
           
         
        ( 
        s 
        + 
        μ 
        + 
        ν 
        + 
        1 
        ) 
       
     
    {\displaystyle {\tilde {f}}_{1}(s+\mu )\,{\tilde {f}}_{2}(s+\mu +\nu +1)} 
   
 
 
Multiplicative convolution (generalized)
  
  
    
      
        
          x 
          
            μ 
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          y 
          
            ν 
           
         
        
          f 
          
            1 
           
         
        ( 
        x 
        y 
        ) 
        
          f 
          
            2 
           
         
        ( 
        y 
        ) 
        d 
        y 
       
     
    {\displaystyle x^{\mu }\int _{0}^{\infty }y^{\nu }\,f_{1}(x\,y)\,f_{2}(y)\,dy} 
   
 
  
    
      
        
          
            
              
                f 
                ~ 
               
             
           
          
            1 
           
         
        ( 
        s 
        + 
        μ 
        ) 
        
          
            
              
                f 
                ~ 
               
             
           
          
            2 
           
         
        ( 
        1 
        − 
        s 
        − 
        μ 
        + 
        ν 
        ) 
       
     
    {\displaystyle {\tilde {f}}_{1}(s+\mu )\,{\tilde {f}}_{2}(1-s-\mu +\nu )} 
   
 
 
Multiplicative convolution (generalized)
  
  
    
      
        
          f 
          
            1 
           
         
        ( 
        x 
        ) 
        
          f 
          
            2 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle f_{1}(x)\,f_{2}(x)} 
   
 
  
    
      
        
          
            1 
            
              2 
              π 
              i 
             
           
         
        
          ∫ 
          
            c 
            − 
            i 
            ∞ 
           
          
            c 
            + 
            i 
            ∞ 
           
         
        
          
            
              
                f 
                ~ 
               
             
           
          
            1 
           
         
        ( 
        r 
        ) 
        
          
            
              
                f 
                ~ 
               
             
           
          
            2 
           
         
        ( 
        s 
        − 
        r 
        ) 
        d 
        r 
       
     
    {\displaystyle {\frac {1}{2\pi i}}\int _{c-i\infty }^{c+i\infty }{\tilde {f}}_{1}(r)\,{\tilde {f}}_{2}(s-r)\,dr} 
   
 
  
    
      
        
          
            
              
                
                  α 
                  
                    2 
                   
                 
                + 
                c 
               
              
                < 
                ℜ 
                s 
                < 
                
                  β 
                  
                    2 
                   
                 
                + 
                c 
               
             
            
              
                
                  α 
                  
                    1 
                   
                 
               
              
                < 
                c 
                < 
                
                  β 
                  
                    1 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\alpha _{2}+c&<\Re s<\beta _{2}+c\\\alpha _{1}&<c<\beta _{1}\end{aligned}}} 
   
 Multiplication. Only valid if integral exists. See Parseval's theorem below for conditions which ensure the existence of the integral.
  
[ edit ] Let 
  
    
      
        
          f 
          
            1 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle f_{1}(x)} 
   
 
  
    
      
        
          f 
          
            2 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle f_{2}(x)} 
   
 
  
    
      
        
          
            
              
                f 
                ~ 
               
             
           
          
            1 
            , 
            2 
           
         
        ( 
        s 
        ) 
        = 
        
          
            M 
           
         
        { 
        
          f 
          
            1 
            , 
            2 
           
         
        } 
        ( 
        s 
        ) 
       
     
    {\displaystyle {\tilde {f}}_{1,2}(s)={\mathcal {M}}\{f_{1,2}\}(s)} 
   
 
  
    
      
        
          α 
          
            1 
            , 
            2 
           
         
        < 
        ℜ 
        s 
        < 
        
          β 
          
            1 
            , 
            2 
           
         
       
     
    {\displaystyle \alpha _{1,2}<\Re s<\beta _{1,2}} 
   
 
  
    
      
        c 
        ∈ 
        
          R 
         
       
     
    {\displaystyle c\in \mathbb {R} } 
   
 
  
    
      
        max 
        ( 
        
          α 
          
            1 
           
         
        , 
        1 
        − 
        
          β 
          
            2 
           
         
        ) 
        < 
        c 
        < 
        min 
        ( 
        
          β 
          
            1 
           
         
        , 
        1 
        − 
        
          α 
          
            2 
           
         
        ) 
       
     
    {\displaystyle \max(\alpha _{1},1-\beta _{2})<c<\min(\beta _{1},1-\alpha _{2})} 
   
 
  
    
      
        
          x 
          
            c 
            − 
            1 
            
              / 
             
            2 
           
         
        
          f 
          
            1 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle x^{c-1/2}\,f_{1}(x)} 
   
 
  
    
      
        
          x 
          
            1 
            
              / 
             
            2 
            − 
            c 
           
         
        
          f 
          
            2 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle x^{1/2-c}\,f_{2}(x)} 
   
 
  
    
      
        ( 
        0 
        , 
        ∞ 
        ) 
       
     
    {\displaystyle (0,\infty )} 
   
 Parseval's formula  holds:
[ 6] 
  
    
      
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          f 
          
            1 
           
         
        ( 
        x 
        ) 
        
          f 
          
            2 
           
         
        ( 
        x 
        ) 
        d 
        x 
        = 
        
          
            1 
            
              2 
              π 
              i 
             
           
         
        
          ∫ 
          
            c 
            − 
            i 
            ∞ 
           
          
            c 
            + 
            i 
            ∞ 
           
         
        
          
            
              
                f 
                
                  1 
                 
               
              ~ 
             
           
         
        ( 
        s 
        ) 
        
          
            
              
                f 
                
                  2 
                 
               
              ~ 
             
           
         
        ( 
        1 
        − 
        s 
        ) 
        d 
        s 
       
     
    {\displaystyle \int _{0}^{\infty }f_{1}(x)\,f_{2}(x)\,dx={\frac {1}{2\pi i}}\int _{c-i\infty }^{c+i\infty }{\tilde {f_{1}}}(s)\,{\tilde {f_{2}}}(1-s)\,ds} 
   
 
  
    
      
        ℜ 
        r 
        = 
        c 
       
     
    {\displaystyle \Re r=c} 
   
 
We can replace 
  
    
      
        
          f 
          
            2 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle f_{2}(x)} 
   
 
  
    
      
        
          f 
          
            2 
           
         
        ( 
        x 
        ) 
        
          x 
          
            
              s 
              
                0 
               
             
            − 
            1 
           
         
       
     
    {\displaystyle f_{2}(x)\,x^{s_{0}-1}} 
   
 
  
    
      
        
          f 
          
            1 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle f_{1}(x)} 
   
 
  
    
      
        
          f 
          
            2 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle f_{2}(x)} 
   
 
  
    
      
        
          
            
              
                f 
                ~ 
               
             
           
          
            1 
            , 
            2 
           
         
        ( 
        s 
        ) 
        = 
        
          
            M 
           
         
        { 
        
          f 
          
            1 
            , 
            2 
           
         
        } 
        ( 
        s 
        ) 
       
     
    {\displaystyle {\tilde {f}}_{1,2}(s)={\mathcal {M}}\{f_{1,2}\}(s)} 
   
 
  
    
      
        
          α 
          
            1 
            , 
            2 
           
         
        < 
        ℜ 
        s 
        < 
        
          β 
          
            1 
            , 
            2 
           
         
       
     
    {\displaystyle \alpha _{1,2}<\Re s<\beta _{1,2}} 
   
 
  
    
      
        c 
        ∈ 
        
          R 
         
       
     
    {\displaystyle c\in \mathbb {R} } 
   
 
  
    
      
        
          α 
          
            1 
           
         
        < 
        c 
        < 
        
          β 
          
            1 
           
         
       
     
    {\displaystyle \alpha _{1}<c<\beta _{1}} 
   
 
  
    
      
        
          s 
          
            0 
           
         
        ∈ 
        
          C 
         
       
     
    {\displaystyle s_{0}\in \mathbb {C} } 
   
 
  
    
      
        
          α 
          
            2 
           
         
        < 
        ℜ 
        
          s 
          
            0 
           
         
        − 
        c 
        < 
        
          β 
          
            2 
           
         
       
     
    {\displaystyle \alpha _{2}<\Re s_{0}-c<\beta _{2}} 
   
 
  
    
      
        
          x 
          
            c 
            − 
            1 
            
              / 
             
            2 
           
         
        
          f 
          
            1 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle x^{c-1/2}\,f_{1}(x)} 
   
 
  
    
      
        
          x 
          
            
              s 
              
                0 
               
             
            − 
            c 
            − 
            1 
            
              / 
             
            2 
           
         
        
          f 
          
            2 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle x^{s_{0}-c-1/2}\,f_{2}(x)} 
   
 
  
    
      
        ( 
        0 
        , 
        ∞ 
        ) 
       
     
    {\displaystyle (0,\infty )} 
   
 [ 6] 
  
    
      
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          f 
          
            1 
           
         
        ( 
        x 
        ) 
        
          f 
          
            2 
           
         
        ( 
        x 
        ) 
        
          x 
          
            
              s 
              
                0 
               
             
            − 
            1 
           
         
        d 
        x 
        = 
        
          
            1 
            
              2 
              π 
              i 
             
           
         
        
          ∫ 
          
            c 
            − 
            i 
            ∞ 
           
          
            c 
            + 
            i 
            ∞ 
           
         
        
          
            
              
                f 
                
                  1 
                 
               
              ~ 
             
           
         
        ( 
        s 
        ) 
        
          
            
              
                f 
                
                  2 
                 
               
              ~ 
             
           
         
        ( 
        
          s 
          
            0 
           
         
        − 
        s 
        ) 
        d 
        s 
       
     
    {\displaystyle \int _{0}^{\infty }f_{1}(x)\,f_{2}(x)\,x^{s_{0}-1}\,dx={\frac {1}{2\pi i}}\int _{c-i\infty }^{c+i\infty }{\tilde {f_{1}}}(s)\,{\tilde {f_{2}}}(s_{0}-s)\,ds} 
   
 
  
    
      
        
          f 
          
            2 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle f_{2}(x)} 
   
 
  
    
      
        
          
            
              
                f 
                
                  1 
                 
               
              ( 
              x 
              ) 
             
            ¯ 
           
         
       
     
    {\displaystyle {\overline {f_{1}(x)}}} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
       
     
    {\displaystyle f(x)} 
   
 
  
    
      
        
          
            
              f 
              ~ 
             
           
         
        ( 
        s 
        ) 
        = 
        
          
            M 
           
         
        { 
        f 
        } 
        ( 
        s 
        ) 
       
     
    {\displaystyle {\tilde {f}}(s)={\mathcal {M}}\{f\}(s)} 
   
 
  
    
      
        α 
        < 
        ℜ 
        s 
        < 
        β 
       
     
    {\displaystyle \alpha <\Re s<\beta } 
   
 
  
    
      
        c 
        ∈ 
        
          R 
         
       
     
    {\displaystyle c\in \mathbb {R} } 
   
 
  
    
      
        α 
        < 
        c 
        < 
        β 
       
     
    {\displaystyle \alpha <c<\beta } 
   
 
  
    
      
        
          x 
          
            c 
            − 
            1 
            
              / 
             
            2 
           
         
        f 
        ( 
        x 
        ) 
       
     
    {\displaystyle x^{c-1/2}\,f(x)} 
   
 
  
    
      
        ( 
        0 
        , 
        ∞ 
        ) 
       
     
    {\displaystyle (0,\infty )} 
   
 Plancherel's theorem  holds:[ 7] 
  
    
      
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          | 
         
        f 
        ( 
        x 
        ) 
        
          
            | 
           
          
            2 
           
         
        
          x 
          
            2 
            c 
            − 
            1 
           
         
        d 
        x 
        = 
        
          
            1 
            
              2 
              π 
             
           
         
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        
          | 
         
        
          
            
              f 
              ~ 
             
           
         
        ( 
        c 
        + 
        i 
        t 
        ) 
        
          
            | 
           
          
            2 
           
         
        d 
        t 
       
     
    {\displaystyle \int _{0}^{\infty }|f(x)|^{2}\,x^{2c-1}dx={\frac {1}{2\pi }}\int _{-\infty }^{\infty }|{\tilde {f}}(c+it)|^{2}\,dt} 
   
 
As an isometry on L 2  spaces [ edit ] In the study of Hilbert spaces , the Mellin transform is often posed in a slightly different way.  For functions in 
  
    
      
        
          L 
          
            2 
           
         
        ( 
        0 
        , 
        ∞ 
        ) 
       
     
    {\displaystyle L^{2}(0,\infty )} 
   
 Lp space ) the fundamental strip always includes 
  
    
      
        
          
            
              1 
              2 
             
           
         
        + 
        i 
        
          R 
         
      
    
    {\displaystyle {\tfrac {1}{2}}+i\mathbb {R} } 
     
 linear operator  
  
    
      
        
          
            
              
                M 
               
              ~ 
             
           
         
       
     
    {\displaystyle {\tilde {\mathcal {M}}}} 
   
 
  
    
      
        
          
            
              
                M 
               
              ~ 
             
           
         
        : 
        
          L 
          
            2 
           
         
        ( 
        0 
        , 
        ∞ 
        ) 
        → 
        
          L 
          
            2 
           
         
        ( 
        − 
        ∞ 
        , 
        ∞ 
        ) 
        , 
       
     
    {\displaystyle {\tilde {\mathcal {M}}}\colon L^{2}(0,\infty )\to L^{2}(-\infty ,\infty ),} 
   
 
  
    
      
        { 
        
          
            
              
                M 
               
              ~ 
             
           
         
        f 
        } 
        ( 
        s 
        ) 
        := 
        
          
            1 
            
              2 
              π 
             
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          x 
          
            − 
            
              
                1 
                2 
               
             
            + 
            i 
            s 
           
         
        f 
        ( 
        x 
        ) 
        d 
        x 
        . 
       
     
    {\displaystyle \{{\tilde {\mathcal {M}}}f\}(s):={\frac {1}{\sqrt {2\pi }}}\int _{0}^{\infty }x^{-{\frac {1}{2}}+is}f(x)\,dx.} 
   
 
  
    
      
        { 
        
          
            
              
                M 
               
              ~ 
             
           
         
        f 
        } 
        ( 
        s 
        ) 
        := 
        
          
            
              1 
              
                2 
                π 
               
             
           
         
        { 
        
          
            M 
           
         
        f 
        } 
        ( 
        
          
            
              1 
              2 
             
           
         
        + 
        i 
        s 
        ) 
        . 
      
    
    {\displaystyle \{{\tilde {\mathcal {M}}}f\}(s):={\tfrac {1}{\sqrt {2\pi }}}\{{\mathcal {M}}f\}({\tfrac {1}{2}}+is).} 
     
 
  
    
      
        
          
            M 
           
         
       
     
    {\displaystyle {\mathcal {M}}} 
   
 
  
    
      
        
          
            
              
                M 
               
              ~ 
             
           
         
       
     
    {\displaystyle {\tilde {\mathcal {M}}}} 
   
 Mellin inversion theorem  then shows that 
  
    
      
        
          
            
              
                M 
               
              ~ 
             
           
         
       
     
    {\displaystyle {\tilde {\mathcal {M}}}} 
   
 
  
    
      
        
          
            
              
                
                  M 
                 
                ~ 
               
             
           
          
            − 
            1 
           
         
        : 
        
          L 
          
            2 
           
         
        ( 
        − 
        ∞ 
        , 
        ∞ 
        ) 
        → 
        
          L 
          
            2 
           
         
        ( 
        0 
        , 
        ∞ 
        ) 
        , 
       
     
    {\displaystyle {\tilde {\mathcal {M}}}^{-1}\colon L^{2}(-\infty ,\infty )\to L^{2}(0,\infty ),} 
   
 
  
    
      
        { 
        
          
            
              
                
                  M 
                 
                ~ 
               
             
           
          
            − 
            1 
           
         
        φ 
        } 
        ( 
        x 
        ) 
        = 
        
          
            1 
            
              2 
              π 
             
           
         
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        
          x 
          
            − 
            
              
                1 
                2 
               
             
            − 
            i 
            s 
           
         
        φ 
        ( 
        s 
        ) 
        d 
        s 
        . 
       
     
    {\displaystyle \{{\tilde {\mathcal {M}}}^{-1}\varphi \}(x)={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }x^{-{\frac {1}{2}}-is}\varphi (s)\,ds.} 
   
 isometry , that is to say 
  
    
      
        ‖ 
        
          
            
              
                M 
               
              ~ 
             
           
         
        f 
        
          ‖ 
          
            
              L 
              
                2 
               
             
            ( 
            − 
            ∞ 
            , 
            ∞ 
            ) 
           
         
        = 
        ‖ 
        f 
        
          ‖ 
          
            
              L 
              
                2 
               
             
            ( 
            0 
            , 
            ∞ 
            ) 
           
         
       
     
    {\displaystyle \|{\tilde {\mathcal {M}}}f\|_{L^{2}(-\infty ,\infty )}=\|f\|_{L^{2}(0,\infty )}} 
   
 
  
    
      
        f 
        ∈ 
        
          L 
          
            2 
           
         
        ( 
        0 
        , 
        ∞ 
        ) 
       
     
    {\displaystyle f\in L^{2}(0,\infty )} 
   
 
  
    
      
        1 
        
          / 
         
        
          
            2 
            π 
           
         
       
     
    {\displaystyle 1/{\sqrt {2\pi }}} 
   
 
In probability theory [ edit ] In probability theory, the Mellin transform is an essential tool in studying the distributions of products of random variables.[ 8] X  is a random variable, and X +  = max{X ,0X  −  = max{−X ,0Mellin transform  of X  is defined as[ 9] 
  
    
      
        
          
            
              M 
             
           
          
            X 
           
         
        ( 
        s 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          x 
          
            s 
           
         
        d 
        
          F 
          
            
              X 
              
                + 
               
             
           
         
        ( 
        x 
        ) 
        + 
        γ 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          x 
          
            s 
           
         
        d 
        
          F 
          
            
              X 
              
                − 
               
             
           
         
        ( 
        x 
        ) 
        , 
       
     
    {\displaystyle {\mathcal {M}}_{X}(s)=\int _{0}^{\infty }x^{s}dF_{X^{+}}(x)+\gamma \int _{0}^{\infty }x^{s}dF_{X^{-}}(x),} 
   
 γ  is a formal indeterminate with γ 2  = 1s  in some complex strip D  = {s  : a  ≤ Re(s ) ≤ b } a  ≤ 0 ≤ b [ 9] 
The Mellin transform 
  
    
      
        
          
            
              M 
             
           
          
            X 
           
         
        ( 
        i 
        t 
        ) 
       
     
    {\displaystyle {\mathcal {M}}_{X}(it)} 
   
 X  uniquely determines its distribution function FX  .[ 9] X  and Y  are two independent random variables, then the Mellin transform of their product is equal to the product of the Mellin transforms of X  and Y :[ 10] 
  
    
      
        
          
            
              M 
             
           
          
            X 
            Y 
           
         
        ( 
        s 
        ) 
        = 
        
          
            
              M 
             
           
          
            X 
           
         
        ( 
        s 
        ) 
        
          
            
              M 
             
           
          
            Y 
           
         
        ( 
        s 
        ) 
       
     
    {\displaystyle {\mathcal {M}}_{XY}(s)={\mathcal {M}}_{X}(s){\mathcal {M}}_{Y}(s)} 
   
 
Problems with Laplacian in cylindrical coordinate system [ edit ] In the Laplacian in cylindrical coordinates in a generic dimension (orthogonal coordinates  with one angle and one radius, and the remaining lengths) there is always a term:
  
    
      
        
          
            1 
            r 
           
         
        
          
            ∂ 
            
              ∂ 
              r 
             
           
         
        
          ( 
          
            r 
            
              
                
                  ∂ 
                  f 
                 
                
                  ∂ 
                  r 
                 
               
             
           
          ) 
         
        = 
        
          f 
          
            r 
            r 
           
         
        + 
        
          
            
              f 
              
                r 
               
             
            r 
           
         
       
     
    {\displaystyle {\frac {1}{r}}{\frac {\partial }{\partial r}}\left(r{\frac {\partial f}{\partial r}}\right)=f_{rr}+{\frac {f_{r}}{r}}} 
   
 
For example, in 2-D polar coordinates the Laplacian is:
  
    
      
        
          ∇ 
          
            2 
           
         
        f 
        = 
        
          
            1 
            r 
           
         
        
          
            ∂ 
            
              ∂ 
              r 
             
           
         
        
          ( 
          
            r 
            
              
                
                  ∂ 
                  f 
                 
                
                  ∂ 
                  r 
                 
               
             
           
          ) 
         
        + 
        
          
            1 
            
              r 
              
                2 
               
             
           
         
        
          
            
              
                ∂ 
                
                  2 
                 
               
              f 
             
            
              ∂ 
              
                θ 
                
                  2 
                 
               
             
           
         
       
     
    {\displaystyle \nabla ^{2}f={\frac {1}{r}}{\frac {\partial }{\partial r}}\left(r{\frac {\partial f}{\partial r}}\right)+{\frac {1}{r^{2}}}{\frac {\partial ^{2}f}{\partial \theta ^{2}}}} 
   
 
  
    
      
        
          ∇ 
          
            2 
           
         
        f 
        = 
        
          
            1 
            r 
           
         
        
          
            ∂ 
            
              ∂ 
              r 
             
           
         
        
          ( 
          
            r 
            
              
                
                  ∂ 
                  f 
                 
                
                  ∂ 
                  r 
                 
               
             
           
          ) 
         
        + 
        
          
            1 
            
              r 
              
                2 
               
             
           
         
        
          
            
              
                ∂ 
                
                  2 
                 
               
              f 
             
            
              ∂ 
              
                φ 
                
                  2 
                 
               
             
           
         
        + 
        
          
            
              
                ∂ 
                
                  2 
                 
               
              f 
             
            
              ∂ 
              
                z 
                
                  2 
                 
               
             
           
         
        . 
       
     
    {\displaystyle \nabla ^{2}f={\frac {1}{r}}{\frac {\partial }{\partial r}}\left(r{\frac {\partial f}{\partial r}}\right)+{\frac {1}{r^{2}}}{\frac {\partial ^{2}f}{\partial \varphi ^{2}}}+{\frac {\partial ^{2}f}{\partial z^{2}}}.} 
   
 
This term can be treated with the Mellin transform,[ 11] 
  
    
      
        
          
            M 
           
         
        
          ( 
          
            
              r 
              
                2 
               
             
            
              f 
              
                r 
                r 
               
             
            + 
            r 
            
              f 
              
                r 
               
             
            , 
            r 
            → 
            s 
           
          ) 
         
        = 
        
          s 
          
            2 
           
         
        
          
            M 
           
         
        
          ( 
          
            f 
            , 
            r 
            → 
            s 
           
          ) 
         
        = 
        
          s 
          
            2 
           
         
        F 
       
     
    {\displaystyle {\mathcal {M}}\left(r^{2}f_{rr}+rf_{r},r\to s\right)=s^{2}{\mathcal {M}}\left(f,r\to s\right)=s^{2}F} 
   
 
For example, the 2-D Laplace equation  in polar coordinates is the PDE in two variables:
  
    
      
        
          r 
          
            2 
           
         
        
          f 
          
            r 
            r 
           
         
        + 
        r 
        
          f 
          
            r 
           
         
        + 
        
          f 
          
            θ 
            θ 
           
         
        = 
        0 
       
     
    {\displaystyle r^{2}f_{rr}+rf_{r}+f_{\theta \theta }=0} 
   
 
  
    
      
        
          
            1 
            r 
           
         
        
          
            ∂ 
            
              ∂ 
              r 
             
           
         
        
          ( 
          
            r 
            
              
                
                  ∂ 
                  f 
                 
                
                  ∂ 
                  r 
                 
               
             
           
          ) 
         
        + 
        
          
            1 
            
              r 
              
                2 
               
             
           
         
        
          
            
              
                ∂ 
                
                  2 
                 
               
              f 
             
            
              ∂ 
              
                θ 
                
                  2 
                 
               
             
           
         
        = 
        0 
       
     
    {\displaystyle {\frac {1}{r}}{\frac {\partial }{\partial r}}\left(r{\frac {\partial f}{\partial r}}\right)+{\frac {1}{r^{2}}}{\frac {\partial ^{2}f}{\partial \theta ^{2}}}=0} 
   
 harmonic oscillator :
  
    
      
        
          F 
          
            θ 
            θ 
           
         
        + 
        
          s 
          
            2 
           
         
        F 
        = 
        0 
       
     
    {\displaystyle F_{\theta \theta }+s^{2}F=0} 
   
 
  
    
      
        F 
        ( 
        s 
        , 
        θ 
        ) 
        = 
        
          C 
          
            1 
           
         
        ( 
        s 
        ) 
        cos 
         
        ( 
        s 
        θ 
        ) 
        + 
        
          C 
          
            2 
           
         
        ( 
        s 
        ) 
        sin 
         
        ( 
        s 
        θ 
        ) 
       
     
    {\displaystyle F(s,\theta )=C_{1}(s)\cos(s\theta )+C_{2}(s)\sin(s\theta )} 
   
 
Now let's impose for example some simple wedge boundary conditions  to the original Laplace equation:
  
    
      
        f 
        ( 
        r 
        , 
        − 
        
          θ 
          
            0 
           
         
        ) 
        = 
        a 
        ( 
        r 
        ) 
        , 
        f 
        ( 
        r 
        , 
        
          θ 
          
            0 
           
         
        ) 
        = 
        b 
        ( 
        r 
        ) 
       
     
    {\displaystyle f(r,-\theta _{0})=a(r),\quad f(r,\theta _{0})=b(r)} 
   
 
  
    
      
        F 
        ( 
        s 
        , 
        − 
        
          θ 
          
            0 
           
         
        ) 
        = 
        A 
        ( 
        s 
        ) 
        , 
        F 
        ( 
        s 
        , 
        
          θ 
          
            0 
           
         
        ) 
        = 
        B 
        ( 
        s 
        ) 
       
     
    {\displaystyle F(s,-\theta _{0})=A(s),\quad F(s,\theta _{0})=B(s)} 
   
 
These conditions imposed to the solution particularize it to:
  
    
      
        F 
        ( 
        s 
        , 
        θ 
        ) 
        = 
        A 
        ( 
        s 
        ) 
        
          
            
              sin 
               
              ( 
              s 
              ( 
              
                θ 
                
                  0 
                 
               
              − 
              θ 
              ) 
              ) 
             
            
              sin 
               
              ( 
              2 
              
                θ 
                
                  0 
                 
               
              s 
              ) 
             
           
         
        + 
        B 
        ( 
        s 
        ) 
        
          
            
              sin 
               
              ( 
              s 
              ( 
              
                θ 
                
                  0 
                 
               
              + 
              θ 
              ) 
              ) 
             
            
              sin 
               
              ( 
              2 
              
                θ 
                
                  0 
                 
               
              s 
              ) 
             
           
         
       
     
    {\displaystyle F(s,\theta )=A(s){\frac {\sin(s(\theta _{0}-\theta ))}{\sin(2\theta _{0}s)}}+B(s){\frac {\sin(s(\theta _{0}+\theta ))}{\sin(2\theta _{0}s)}}} 
   
 
Now by the convolution theorem for Mellin transform, the solution in the Mellin domain can be inverted:
  
    
      
        f 
        ( 
        r 
        , 
        θ 
        ) 
        = 
        
          
            
              
                r 
                
                  m 
                 
               
              cos 
               
              ( 
              m 
              θ 
              ) 
             
            
              2 
              
                θ 
                
                  0 
                 
               
             
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          ( 
          
            
              
                
                  a 
                  ( 
                  x 
                  ) 
                 
                
                  
                    x 
                    
                      2 
                      m 
                     
                   
                  + 
                  2 
                  
                    r 
                    
                      m 
                     
                   
                  
                    x 
                    
                      m 
                     
                   
                  sin 
                   
                  ( 
                  m 
                  θ 
                  ) 
                  + 
                  
                    r 
                    
                      2 
                      m 
                     
                   
                 
               
             
            + 
            
              
                
                  b 
                  ( 
                  x 
                  ) 
                 
                
                  
                    x 
                    
                      2 
                      m 
                     
                   
                  − 
                  2 
                  
                    r 
                    
                      m 
                     
                   
                  
                    x 
                    
                      m 
                     
                   
                  sin 
                   
                  ( 
                  m 
                  θ 
                  ) 
                  + 
                  
                    r 
                    
                      2 
                      m 
                     
                   
                 
               
             
           
          ) 
         
        
          x 
          
            m 
            − 
            1 
           
         
        d 
        x 
       
     
    {\displaystyle f(r,\theta )={\frac {r^{m}\cos(m\theta )}{2\theta _{0}}}\int _{0}^{\infty }\left({\frac {a(x)}{x^{2m}+2r^{m}x^{m}\sin(m\theta )+r^{2m}}}+{\frac {b(x)}{x^{2m}-2r^{m}x^{m}\sin(m\theta )+r^{2m}}}\right)x^{m-1}\,dx} 
   
 
  
    
      
        
          
            
              M 
             
           
          
            − 
            1 
           
         
        
          ( 
          
            
              
                
                  sin 
                   
                  ( 
                  s 
                  φ 
                  ) 
                 
                
                  sin 
                   
                  ( 
                  2 
                  
                    θ 
                    
                      0 
                     
                   
                  s 
                  ) 
                 
               
             
            ; 
            s 
            → 
            r 
           
          ) 
         
        = 
        
          
            1 
            
              2 
              
                θ 
                
                  0 
                 
               
             
           
         
        
          
            
              
                r 
                
                  m 
                 
               
              sin 
               
              ( 
              m 
              φ 
              ) 
             
            
              1 
              + 
              2 
              
                r 
                
                  m 
                 
               
              cos 
               
              ( 
              m 
              φ 
              ) 
              + 
              
                r 
                
                  2 
                  m 
                 
               
             
           
         
       
     
    {\displaystyle {\mathcal {M}}^{-1}\left({\frac {\sin(s\varphi )}{\sin(2\theta _{0}s)}};s\to r\right)={\frac {1}{2\theta _{0}}}{\frac {r^{m}\sin(m\varphi )}{1+2r^{m}\cos(m\varphi )+r^{2m}}}} 
   
 
  
    
      
        m 
        = 
        
          
            π 
            
              2 
              
                θ 
                
                  0 
                 
               
             
           
         
       
     
    {\displaystyle m={\frac {\pi }{2\theta _{0}}}} 
   
 
The Mellin transform is widely used in computer science for the analysis of algorithms[ 12] scale invariance  property.  The magnitude of the Mellin Transform of a scaled function is identical to the magnitude of the original function for purely imaginary inputs.  This scale invariance property is analogous to the Fourier Transform's shift invariance property.  The magnitude of a Fourier transform of a time-shifted function is identical to the magnitude of the Fourier transform of the original function.
This property is useful in image recognition .  An image of an object is easily scaled when the object is moved towards or away from the camera.
In quantum mechanics  and especially quantum field theory ,  Fourier space  is enormously useful and used extensively because momentum and position are Fourier transforms  of each other (for instance, Feynman diagrams  are much more easily computed in momentum space).  In 2011, A. Liam Fitzpatrick , Jared Kaplan , João Penedones , Suvrat Raju , and Balt C. van Rees  showed that Mellin space serves an analogous role in the context of the AdS/CFT correspondence .[ 13] [ 14] [ 15] 
Below is a list of interesting examples for the Mellin transform:
Selected Mellin transforms
 
Function 
  
    
      
        f 
        ( 
        x 
        ) 
       
     
    {\displaystyle f(x)} 
   
  
Mellin transform 
  
    
      
        
          
            
              f 
              ~ 
             
           
         
        ( 
        s 
        ) 
        = 
        
          
            M 
           
         
        { 
        f 
        } 
        ( 
        s 
        ) 
       
     
    {\displaystyle {\tilde {f}}(s)={\mathcal {M}}\{f\}(s)} 
   
  
Region of convergence
 
Comment
  
  
    
      
        
          e 
          
            − 
            x 
           
         
       
     
    {\displaystyle e^{-x}} 
   
 
  
    
      
        Γ 
        ( 
        s 
        ) 
       
     
    {\displaystyle \Gamma (s)} 
   
 
  
    
      
        0 
        < 
        ℜ 
        s 
        < 
        ∞ 
       
     
    {\displaystyle 0<\Re s<\infty } 
   
 
  
  
    
      
        
          e 
          
            − 
            x 
           
         
        − 
        1 
       
     
    {\displaystyle e^{-x}-1} 
   
 
  
    
      
        Γ 
        ( 
        s 
        ) 
       
     
    {\displaystyle \Gamma (s)} 
   
 
  
    
      
        − 
        1 
        < 
        ℜ 
        s 
        < 
        0 
       
     
    {\displaystyle -1<\Re s<0} 
   
 
  
  
    
      
        
          e 
          
            − 
            x 
           
         
        − 
        1 
        + 
        x 
       
     
    {\displaystyle e^{-x}-1+x} 
   
 
  
    
      
        Γ 
        ( 
        s 
        ) 
       
     
    {\displaystyle \Gamma (s)} 
   
 
  
    
      
        − 
        2 
        < 
        ℜ 
        s 
        < 
        − 
        1 
       
     
    {\displaystyle -2<\Re s<-1} 
   
 And generally 
  
    
      
        Γ 
        ( 
        s 
        ) 
       
     
    {\displaystyle \Gamma (s)} 
   
 [ 17] 
  
    
      
        
          e 
          
            − 
            x 
           
         
        − 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            N 
            − 
            1 
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                 
               
             
            
              n 
              ! 
             
           
         
        
          x 
          
            n 
           
         
        , 
       
     
    {\displaystyle e^{-x}-\sum _{n=0}^{N-1}{\frac {(-1)^{n}}{n!}}x^{n},} 
   
 for 
  
    
      
        − 
        N 
        < 
        ℜ 
        s 
        < 
        − 
        N 
        + 
        1 
       
     
    {\displaystyle -N<\Re s<-N+1} 
   
  
  
  
    
      
        
          e 
          
            − 
            
              x 
              
                2 
               
             
           
         
       
     
    {\displaystyle e^{-x^{2}}} 
   
 
  
    
      
        
          
            
              1 
              2 
             
           
         
        Γ 
        ( 
        
          
            
              1 
              2 
             
           
         
        s 
        ) 
      
    
    {\displaystyle {\tfrac {1}{2}}\Gamma ({\tfrac {1}{2}}s)} 
     
 
  
    
      
        0 
        < 
        ℜ 
        s 
        < 
        ∞ 
       
     
    {\displaystyle 0<\Re s<\infty } 
   
 
  
  
    
      
        
          e 
          r 
          f 
          c 
         
        ( 
        x 
        ) 
       
     
    {\displaystyle \mathrm {erfc} (x)} 
   
 
  
    
      
        
          
            
              Γ 
              ( 
              
                
                  
                    1 
                    2 
                   
                 
               
              ( 
              1 
              + 
              s 
              ) 
              ) 
            
            
              
                
                  π 
                 
               
              s 
             
          
        
      
    
    {\displaystyle {\frac {\Gamma ({\tfrac {1}{2}}(1+s))}{{\sqrt {\pi }}\;s}}} 
        
 
  
    
      
        0 
        < 
        ℜ 
        s 
        < 
        ∞ 
       
     
    {\displaystyle 0<\Re s<\infty } 
   
 
  
  
    
      
        
          e 
          
            − 
            ( 
            ln 
             
            x 
            
              ) 
              
                2 
               
             
           
         
       
     
    {\displaystyle e^{-(\ln x)^{2}}} 
   
 
  
    
      
        
          
            π 
           
         
        
          e 
          
            
              
                
                  1 
                  4 
                 
               
             
            
              s 
              
                2 
               
             
          
        
      
    
    {\displaystyle {\sqrt {\pi }}\,e^{{\tfrac {1}{4}}s^{2}}} 
       
 
  
    
      
        − 
        ∞ 
        < 
        ℜ 
        s 
        < 
        ∞ 
       
     
    {\displaystyle -\infty <\Re s<\infty } 
   
 
  
  
    
      
        δ 
        ( 
        x 
        − 
        a 
        ) 
       
     
    {\displaystyle \delta (x-a)} 
   
 
  
    
      
        
          a 
          
            s 
            − 
            1 
           
         
       
     
    {\displaystyle a^{s-1}} 
   
 
  
    
      
        − 
        ∞ 
        < 
        ℜ 
        s 
        < 
        ∞ 
       
     
    {\displaystyle -\infty <\Re s<\infty } 
   
 
  
    
      
        a 
        > 
        0 
        , 
        δ 
        ( 
        x 
        ) 
       
     
    {\displaystyle a>0,\;\delta (x)} 
   
 Dirac delta function .
 
  
    
      
        u 
        ( 
        1 
        − 
        x 
        ) 
        = 
        
          { 
          
            
              
                
                  1 
                 
                
                  
                    if 
                   
                  0 
                  < 
                  x 
                  < 
                  1 
                 
                 
              
                
                  0 
                 
                
                  
                    if 
                   
                  1 
                  < 
                  x 
                  < 
                  ∞ 
                 
                 
             
           
           
       
     
    {\displaystyle u(1-x)=\left\{{\begin{aligned}&1&&\;{\text{if}}\;0<x<1&\\&0&&\;{\text{if}}\;1<x<\infty &\end{aligned}}\right.} 
   
 
  
    
      
        
          
            1 
            s 
           
         
       
     
    {\displaystyle {\frac {1}{s}}} 
   
 
  
    
      
        0 
        < 
        ℜ 
        s 
        < 
        ∞ 
       
     
    {\displaystyle 0<\Re s<\infty } 
   
 
  
    
      
        u 
        ( 
        x 
        ) 
       
     
    {\displaystyle u(x)} 
   
 Heaviside step function 
 
  
    
      
        − 
        u 
        ( 
        x 
        − 
        1 
        ) 
        = 
        
          { 
          
            
              
                
                  0 
                 
                
                  
                    if 
                   
                  0 
                  < 
                  x 
                  < 
                  1 
                 
                 
              
                
                  − 
                  1 
                 
                
                  
                    if 
                   
                  1 
                  < 
                  x 
                  < 
                  ∞ 
                 
                 
             
           
           
       
     
    {\displaystyle -u(x-1)=\left\{{\begin{aligned}&0&&\;{\text{if}}\;0<x<1&\\&-1&&\;{\text{if}}\;1<x<\infty &\end{aligned}}\right.} 
   
 
  
    
      
        
          
            1 
            s 
           
         
       
     
    {\displaystyle {\frac {1}{s}}} 
   
 
  
    
      
        − 
        ∞ 
        < 
        ℜ 
        s 
        < 
        0 
       
     
    {\displaystyle -\infty <\Re s<0} 
   
 
  
  
    
      
        u 
        ( 
        1 
        − 
        x 
        ) 
        
          x 
          
            a 
           
         
        = 
        
          { 
          
            
              
                
                  
                    x 
                    
                      a 
                     
                   
                 
                
                  
                    if 
                   
                  0 
                  < 
                  x 
                  < 
                  1 
                 
                 
              
                
                  0 
                 
                
                  
                    if 
                   
                  1 
                  < 
                  x 
                  < 
                  ∞ 
                 
                 
             
           
           
       
     
    {\displaystyle u(1-x)\,x^{a}=\left\{{\begin{aligned}&x^{a}&&\;{\text{if}}\;0<x<1&\\&0&&\;{\text{if}}\;1<x<\infty &\end{aligned}}\right.} 
   
 
  
    
      
        
          
            1 
            
              s 
              + 
              a 
             
           
         
       
     
    {\displaystyle {\frac {1}{s+a}}} 
   
 
  
    
      
        − 
        ℜ 
        a 
        < 
        ℜ 
        s 
        < 
        ∞ 
       
     
    {\displaystyle -\Re a<\Re s<\infty } 
   
 
  
  
    
      
        − 
        u 
        ( 
        x 
        − 
        1 
        ) 
        
          x 
          
            a 
           
         
        = 
        
          { 
          
            
              
                
                  0 
                 
                
                  
                    if 
                   
                  0 
                  < 
                  x 
                  < 
                  1 
                 
                 
              
                
                  − 
                  
                    x 
                    
                      a 
                     
                   
                 
                
                  
                    if 
                   
                  1 
                  < 
                  x 
                  < 
                  ∞ 
                 
                 
             
           
           
       
     
    {\displaystyle -u(x-1)\,x^{a}=\left\{{\begin{aligned}&0&&\;{\text{if}}\;0<x<1&\\&-x^{a}&&\;{\text{if}}\;1<x<\infty &\end{aligned}}\right.} 
   
 
  
    
      
        
          
            1 
            
              s 
              + 
              a 
             
           
         
       
     
    {\displaystyle {\frac {1}{s+a}}} 
   
 
  
    
      
        − 
        ∞ 
        < 
        ℜ 
        s 
        < 
        − 
        ℜ 
        a 
       
     
    {\displaystyle -\infty <\Re s<-\Re a} 
   
 
  
  
    
      
        u 
        ( 
        1 
        − 
        x 
        ) 
        
          x 
          
            a 
           
         
        ln 
         
        x 
        = 
        
          { 
          
            
              
                
                  
                    x 
                    
                      a 
                     
                   
                  ln 
                   
                  x 
                 
                
                  
                    if 
                   
                  0 
                  < 
                  x 
                  < 
                  1 
                 
                 
              
                
                  0 
                 
                
                  
                    if 
                   
                  1 
                  < 
                  x 
                  < 
                  ∞ 
                 
                 
             
           
           
       
     
    {\displaystyle u(1-x)\,x^{a}\ln x=\left\{{\begin{aligned}&x^{a}\ln x&&\;{\text{if}}\;0<x<1&\\&0&&\;{\text{if}}\;1<x<\infty &\end{aligned}}\right.} 
   
 
  
    
      
        
          
            1 
            
              ( 
              s 
              + 
              a 
              
                ) 
                
                  2 
                 
               
             
           
         
       
     
    {\displaystyle {\frac {1}{(s+a)^{2}}}} 
   
 
  
    
      
        − 
        ℜ 
        a 
        < 
        ℜ 
        s 
        < 
        ∞ 
       
     
    {\displaystyle -\Re a<\Re s<\infty } 
   
 
  
  
    
      
        − 
        u 
        ( 
        x 
        − 
        1 
        ) 
        
          x 
          
            a 
           
         
        ln 
         
        x 
        = 
        
          { 
          
            
              
                
                  0 
                 
                
                  
                    if 
                   
                  0 
                  < 
                  x 
                  < 
                  1 
                 
                 
              
                
                  − 
                  
                    x 
                    
                      a 
                     
                   
                  ln 
                   
                  x 
                 
                
                  
                    if 
                   
                  1 
                  < 
                  x 
                  < 
                  ∞ 
                 
                 
             
           
           
       
     
    {\displaystyle -u(x-1)\,x^{a}\ln x=\left\{{\begin{aligned}&0&&\;{\text{if}}\;0<x<1&\\&-x^{a}\ln x&&\;{\text{if}}\;1<x<\infty &\end{aligned}}\right.} 
   
 
  
    
      
        
          
            1 
            
              ( 
              s 
              + 
              a 
              
                ) 
                
                  2 
                 
               
             
           
         
       
     
    {\displaystyle {\frac {1}{(s+a)^{2}}}} 
   
 
  
    
      
        − 
        ∞ 
        < 
        ℜ 
        s 
        < 
        − 
        ℜ 
        a 
       
     
    {\displaystyle -\infty <\Re s<-\Re a} 
   
 
  
  
    
      
        
          
            1 
            
              1 
              + 
              x 
             
           
         
       
     
    {\displaystyle {\frac {1}{1+x}}} 
   
 
  
    
      
        
          
            π 
            
              sin 
               
              ( 
              π 
              s 
              ) 
             
           
         
       
     
    {\displaystyle {\frac {\pi }{\sin(\pi s)}}} 
   
 
  
    
      
        0 
        < 
        ℜ 
        s 
        < 
        1 
       
     
    {\displaystyle 0<\Re s<1} 
   
 
  
  
    
      
        
          
            1 
            
              1 
              − 
              x 
             
           
         
       
     
    {\displaystyle {\frac {1}{1-x}}} 
   
 
  
    
      
        
          
            π 
            
              tan 
               
              ( 
              π 
              s 
              ) 
             
           
         
       
     
    {\displaystyle {\frac {\pi }{\tan(\pi s)}}} 
   
 
  
    
      
        0 
        < 
        ℜ 
        s 
        < 
        1 
       
     
    {\displaystyle 0<\Re s<1} 
   
 
  
  
    
      
        
          
            1 
            
              1 
              + 
              
                x 
                
                  2 
                 
               
             
           
         
       
     
    {\displaystyle {\frac {1}{1+x^{2}}}} 
   
 
  
    
      
        
          
            π 
            
              2 
              sin 
               
              ( 
              
                
                  
                    1 
                    2 
                   
                 
               
              π 
              s 
              ) 
            
          
        
      
    
    {\displaystyle {\frac {\pi }{2\sin({\tfrac {1}{2}}\pi s)}}} 
        
 
  
    
      
        0 
        < 
        ℜ 
        s 
        < 
        2 
       
     
    {\displaystyle 0<\Re s<2} 
   
 
  
  
    
      
        ln 
         
        ( 
        1 
        + 
        x 
        ) 
       
     
    {\displaystyle \ln(1+x)} 
   
 
  
    
      
        
          
            π 
            
              s 
              sin 
               
              ( 
              π 
              s 
              ) 
             
           
         
       
     
    {\displaystyle {\frac {\pi }{s\,\sin(\pi s)}}} 
   
 
  
    
      
        − 
        1 
        < 
        ℜ 
        s 
        < 
        0 
       
     
    {\displaystyle -1<\Re s<0} 
   
 
  
  
    
      
        sin 
         
        ( 
        x 
        ) 
       
     
    {\displaystyle \sin(x)} 
   
 
  
    
      
        sin 
         
        ( 
        
          
            
              1 
              2 
             
           
         
        π 
        s 
        ) 
        Γ 
        ( 
        s 
        ) 
      
    
    {\displaystyle \sin({\tfrac {1}{2}}\pi s)\,\Gamma (s)} 
     
 
  
    
      
        − 
        1 
        < 
        ℜ 
        s 
        < 
        1 
       
     
    {\displaystyle -1<\Re s<1} 
   
 
  
  
    
      
        cos 
         
        ( 
        x 
        ) 
       
     
    {\displaystyle \cos(x)} 
   
 
  
    
      
        cos 
         
        ( 
        
          
            
              1 
              2 
             
           
         
        π 
        s 
        ) 
        Γ 
        ( 
        s 
        ) 
      
    
    {\displaystyle \cos({\tfrac {1}{2}}\pi s)\,\Gamma (s)} 
     
 
  
    
      
        0 
        < 
        ℜ 
        s 
        < 
        1 
       
     
    {\displaystyle 0<\Re s<1} 
   
 
  
  
    
      
        
          e 
          
            i 
            x 
           
         
       
     
    {\displaystyle e^{ix}} 
   
 
  
    
      
        
          e 
          
            i 
            π 
            s 
            
              / 
             
            2 
           
         
        Γ 
        ( 
        s 
        ) 
       
     
    {\displaystyle e^{i\pi s/2}\,\Gamma (s)} 
   
 
  
    
      
        0 
        < 
        ℜ 
        s 
        < 
        1 
       
     
    {\displaystyle 0<\Re s<1} 
   
 
  
  
    
      
        
          J 
          
            0 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle J_{0}(x)} 
   
 
  
    
      
        
          
            
              2 
              
                s 
                − 
                1 
               
             
            π 
           
         
        sin 
         
        ( 
        π 
        s 
        
          / 
         
        2 
        ) 
        
          
            [ 
            
              Γ 
              ( 
              s 
              
                / 
               
              2 
              ) 
             
            ] 
           
          
            2 
           
         
       
     
    {\displaystyle {\frac {2^{s-1}}{\pi }}\,\sin(\pi s/2)\,\left[\Gamma (s/2)\right]^{2}} 
   
 
  
    
      
        0 
        < 
        ℜ 
        s 
        < 
        
          
            
              3 
              2 
             
           
         
      
    
    {\displaystyle 0<\Re s<{\tfrac {3}{2}}} 
     
 
  
    
      
        
          J 
          
            0 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle J_{0}(x)} 
   
 Bessel function  of the first kind.
 
  
    
      
        
          Y 
          
            0 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle Y_{0}(x)} 
   
 
  
    
      
        − 
        
          
            
              2 
              
                s 
                − 
                1 
               
             
            π 
           
         
        cos 
         
        ( 
        π 
        s 
        
          / 
         
        2 
        ) 
        
          
            [ 
            
              Γ 
              ( 
              s 
              
                / 
               
              2 
              ) 
             
            ] 
           
          
            2 
           
         
       
     
    {\displaystyle -{\frac {2^{s-1}}{\pi }}\,\cos(\pi s/2)\,\left[\Gamma (s/2)\right]^{2}} 
   
 
  
    
      
        0 
        < 
        ℜ 
        s 
        < 
        
          
            
              3 
              2 
             
           
         
      
    
    {\displaystyle 0<\Re s<{\tfrac {3}{2}}} 
     
 
  
    
      
        
          Y 
          
            0 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle Y_{0}(x)} 
   
 Bessel function  of the second kind
 
  
    
      
        
          K 
          
            0 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle K_{0}(x)} 
   
 
  
    
      
        
          2 
          
            s 
            − 
            2 
           
         
        
          
            [ 
            
              Γ 
              ( 
              s 
              
                / 
               
              2 
              ) 
             
            ] 
           
          
            2 
           
         
       
     
    {\displaystyle 2^{s-2}\,\left[\Gamma (s/2)\right]^{2}} 
   
 
  
    
      
        0 
        < 
        ℜ 
        s 
        < 
        ∞ 
       
     
    {\displaystyle 0<\Re s<\infty } 
   
 
  
    
      
        
          K 
          
            0 
           
         
        ( 
        x 
        ) 
       
     
    {\displaystyle K_{0}(x)} 
   
 Bessel function  of the second kind
 
^ Mellin, Hj. "Zur Theorie zweier allgemeinen Klassen bestimmter Integrale". Acta Societatis Scientiarum Fennicae . XXII  (2): 1– 75. ^ Whittaker, E.T. ; Watson, G.N.  (1996). A Course of Modern Analysis ^ Hardy, G. H. ; Littlewood, J. E.  (1916). "Contributions to the Theory of the Riemann Zeta-Function and the Theory of the Distribution of Primes" . Acta Mathematica 41  (1): 119– 196. doi :10.1007/BF02422942 (See notes therein for further references to Cahen's and Mellin's work, including Cahen's thesis.) ^ Wintner, Aurel  (1947). "On Riemann's Reduction of Dirichlet Series to Power Series" . American Journal of Mathematics 69  (4): 769– 789. doi :10.2307/2371798 JSTOR  2371798 .^ a b   Titchmarsh (1948 , p. 95).^ Titchmarsh (1948 , p. 94).^ Galambos & Simonelli (2004 , p. 15)^ a b c   Galambos & Simonelli (2004 , p. 16)^ Galambos & Simonelli (2004 , p. 23)^ Bhimsen, Shivamoggi, Chapter 6: The Mellin Transform, par. 4.3: Distribution of a Potential in a Wedge, pp. 267–8 
^ Philippe Flajolet and Robert Sedgewick. The Average Case Analysis of Algorithms: Mellin Transform Asymptotics. Research Report 2956. 93 pages. Institut National de Recherche en Informatique et en Automatique (INRIA), 1996. 
^ A. Liam Fitzpatrick, Jared Kaplan, Joao Penedones, Suvrat Raju, Balt C. van Rees. "A Natural Language for AdS/CFT Correlators" . 
^ A. Liam Fitzpatrick, Jared Kaplan. "Unitarity and the Holographic S-Matrix"  
^ A. Liam Fitzpatrick.  "AdS/CFT and the Holographic S-Matrix" , video lecture. 
^ Bertrand, Jacqueline; Bertrand, Pierre; Ovarlez, Jean-Philippe (1995). The Mellin Transform: The Transforms and Applications Handbook . Taylor & Francis. ISBN  978-1420066524   
Bracewell, Ronald N. (2000). The Fourier Transform and Its Applications  (3rd ed.). Debnath, Lokenath; Bhatta, Dambaru (19 April 2016). Integral Transforms and Their Applications ISBN  978-1-4200-1091-6  Epstein, Benjamin. "Some Applications of the Mellin Transform in Statistics" . Carnegie Mellon Institute of Technology. Erdélyi, Arthur (1954). Tables of Integral Transforms . Vol. 1. McGraw-Hill. Flajolet, P.; Gourdon, X.; Dumas, P. (1995). "Mellin transforms and asymptotics: Harmonic sums"  (PDF) . Theoretical Computer Science . 144  (1– 2): 3– 58. doi :10.1016/0304-3975(95)00002-e . Galambos, Janos; Simonelli, Italo (2004). Products of random variables: applications to problems of physics and to arithmetical functions ISBN  0-8247-5402-6  Paris, R. B.; Kaminski, D. (2001). Asymptotics and Mellin-Barnes Integrals ISBN  9780521790017  Polyanin, A. D.; Manzhirov, A. V. (1998). Handbook of Integral Equations . Boca Raton, Florida: CRC Press. ISBN  0-8493-2876-4  Titchmarsh, E. C. (1948). Introduction to the Theory of Fourier Integrals  (2nd ed.). Polyanin, Andrei D. "Tables of Integral Transforms" . EqWorld: The World of Mathematical Equations . "Mellin transform" , Encyclopedia of Mathematics EMS Press , 2001 [1994]Weisstein, Eric W.  "Mellin Transform" . MathWorld  
Philippe Flajolet, Xavier Gourdon, Philippe Dumas, Mellin Transforms and Asymptotics: Harmonic sums.  
Antonio Gonzáles, Marko Riedel Celebrando un clásico , newsgroup es.ciencia.matematicas 
Juan Sacerdoti, Funciones Eulerianas  
Mellin Transform Methods , Digital Library of Mathematical Functions , 2011-08-29, National Institute of Standards and Technology Antonio De Sena and Davide Rocchesso, A Fast Mellin Transform with Applications in DAFX