From Wikipedia, the free encyclopedia
In mathematics , the Legendre chi function is a special function whose Taylor series is also a Dirichlet series , given by
χ
ν
(
z
)
=
∑
k
=
0
∞
z
2
k
+
1
(
2
k
+
1
)
ν
.
{\displaystyle \chi _{\nu }(z)=\sum _{k=0}^{\infty }{\frac {z^{2k+1}}{(2k+1)^{\nu }}}.}
As such, it resembles the Dirichlet series for the polylogarithm , and, indeed, is trivially expressible in terms of the polylogarithm as
χ
ν
(
z
)
=
1
2
[
Li
ν
(
z
)
−
Li
ν
(
−
z
)
]
.
{\displaystyle \chi _{\nu }(z)={\frac {1}{2}}\left[\operatorname {Li} _{\nu }(z)-\operatorname {Li} _{\nu }(-z)\right].}
The Legendre chi function appears as the discrete Fourier transform , with respect to the order ν, of the Hurwitz zeta function , and also of the Euler polynomials , with the explicit relationships given in those articles.
The Legendre chi function is a special case of the Lerch transcendent , and is given by
χ
ν
(
z
)
=
2
−
ν
z
Φ
(
z
2
,
ν
,
1
/
2
)
.
{\displaystyle \chi _{\nu }(z)=2^{-\nu }z\,\Phi (z^{2},\nu ,1/2).}
Identities
χ
2
(
x
)
+
χ
2
(
1
/
x
)
=
π
2
4
−
i
π
2
ln
|
x
|
.
{\displaystyle \chi _{2}(x)+\chi _{2}(1/x)={\frac {\pi ^{2}}{4}}-{\frac {i\pi }{2}}\ln |x|.}
d
d
x
χ
2
(
x
)
=
a
r
c
t
a
n
h
x
x
.
{\displaystyle {\frac {d}{dx}}\chi _{2}(x)={\frac {{\rm {arctanh\,}}x}{x}}.}
Integral relations
∫
0
π
/
2
arcsin
(
r
sin
θ
)
d
θ
=
χ
2
(
r
)
{\displaystyle \int _{0}^{\pi /2}\arcsin(r\sin \theta )d\theta =\chi _{2}\left(r\right)}
∫
0
π
/
2
arctan
(
r
sin
θ
)
d
θ
=
−
1
2
∫
0
π
r
θ
cos
θ
1
+
r
2
sin
2
θ
d
θ
=
2
χ
2
(
1
+
r
2
−
1
r
)
{\displaystyle \int _{0}^{\pi /2}\arctan(r\sin \theta )d\theta =-{\frac {1}{2}}\int _{0}^{\pi }{\frac {r\theta \cos \theta }{1+r^{2}\sin ^{2}\theta }}d\theta =2\chi _{2}\left({\frac {{\sqrt {1+r^{2}}}-1}{r}}\right)}
∫
0
π
/
2
arctan
(
p
sin
θ
)
arctan
(
q
sin
θ
)
d
θ
=
π
χ
2
(
1
+
p
2
−
1
p
⋅
1
+
q
2
−
1
q
)
{\displaystyle \int _{0}^{\pi /2}\arctan(p\sin \theta )\arctan(q\sin \theta )d\theta =\pi \chi _{2}\left({\frac {{\sqrt {1+p^{2}}}-1}{p}}\cdot {\frac {{\sqrt {1+q^{2}}}-1}{q}}\right)}
∫
0
α
∫
0
β
d
x
d
y
1
−
x
2
y
2
=
χ
2
(
α
β
)
i
f
|
α
β
|
≤
1
{\displaystyle \int _{0}^{\alpha }\int _{0}^{\beta }{\frac {dxdy}{1-x^{2}y^{2}}}=\chi _{2}(\alpha \beta )\qquad {\rm {if}}~~|\alpha \beta |\leq 1}
References