Special mathematical function
In mathematics , the Lerch transcendent , is a special function  that generalizes the Hurwitz zeta function  and the polylogarithm .  It is named after Czech mathematician Mathias Lerch , who published a paper about a similar function in 1887.[ 1]   The Lerch transcendent, is given by:
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        α 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              z 
              
                n 
               
             
            
              ( 
              n 
              + 
              α 
              
                ) 
                
                  s 
                 
               
             
           
         
       
     
    {\displaystyle \Phi (z,s,\alpha )=\sum _{n=0}^{\infty }{\frac {z^{n}}{(n+\alpha )^{s}}}} 
   
  . 
It only converges for any real number 
  
    
      
        α 
        > 
        0 
       
     
    {\displaystyle \alpha >0} 
   
  , where 
  
    
      
        
          | 
         
        z 
        
          | 
         
        < 
        1 
       
     
    {\displaystyle |z|<1} 
   
  , or 
  
    
      
        
          
            R 
           
         
        ( 
        s 
        ) 
        > 
        1 
       
     
    {\displaystyle {\mathfrak {R}}(s)>1} 
   
  , and 
  
    
      
        
          | 
         
        z 
        
          | 
         
        = 
        1 
       
     
    {\displaystyle |z|=1} 
   
  .
 
The Lerch transcendent is related to and generalizes various special functions.
The Lerch zeta function  is given by:
  
    
      
        L 
        ( 
        λ 
        , 
        s 
        , 
        α 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              e 
              
                2 
                π 
                i 
                λ 
                n 
               
             
            
              ( 
              n 
              + 
              α 
              
                ) 
                
                  s 
                 
               
             
           
         
        = 
        Φ 
        ( 
        
          e 
          
            2 
            π 
            i 
            λ 
           
         
        , 
        s 
        , 
        α 
        ) 
       
     
    {\displaystyle L(\lambda ,s,\alpha )=\sum _{n=0}^{\infty }{\frac {e^{2\pi i\lambda n}}{(n+\alpha )^{s}}}=\Phi (e^{2\pi i\lambda },s,\alpha )} 
   
  
The Hurwitz zeta function  is the special case[ 3]  
  
    
      
        ζ 
        ( 
        s 
        , 
        α 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            1 
            
              ( 
              n 
              + 
              α 
              
                ) 
                
                  s 
                 
               
             
           
         
        = 
        Φ 
        ( 
        1 
        , 
        s 
        , 
        α 
        ) 
       
     
    {\displaystyle \zeta (s,\alpha )=\sum _{n=0}^{\infty }{\frac {1}{(n+\alpha )^{s}}}=\Phi (1,s,\alpha )} 
   
  
The polylogarithm  is another special case:[ 3]  
  
    
      
        
          
            
              Li 
             
           
          
            s 
           
         
        ( 
        z 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              z 
              
                n 
               
             
            
              n 
              
                s 
               
             
           
         
        = 
        z 
        Φ 
        ( 
        z 
        , 
        s 
        , 
        1 
        ) 
       
     
    {\displaystyle {\textrm {Li}}_{s}(z)=\sum _{n=1}^{\infty }{\frac {z^{n}}{n^{s}}}=z\Phi (z,s,1)} 
   
  
The Riemann zeta function  is a special case of both of the above:[ 3]  
  
    
      
        ζ 
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            1 
            
              n 
              
                s 
               
             
           
         
        = 
        Φ 
        ( 
        1 
        , 
        s 
        , 
        1 
        ) 
       
     
    {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\Phi (1,s,1)} 
   
  
The Dirichlet eta function :[ 3]  
  
    
      
        η 
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                  − 
                  1 
                 
               
             
            
              n 
              
                s 
               
             
           
         
        = 
        Φ 
        ( 
        − 
        1 
        , 
        s 
        , 
        1 
        ) 
       
     
    {\displaystyle \eta (s)=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{n^{s}}}=\Phi (-1,s,1)} 
   
  
The Dirichlet beta function :[ 3]  
  
    
      
        β 
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  k 
                 
               
             
            
              ( 
              2 
              k 
              + 
              1 
              
                ) 
                
                  s 
                 
               
             
           
         
        = 
        
          2 
          
            − 
            s 
           
         
        Φ 
        ( 
        − 
        1 
        , 
        s 
        , 
        
          
            
              1 
              2 
             
           
         
        ) 
      
    
    {\displaystyle \beta (s)=\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{(2k+1)^{s}}}=2^{-s}\Phi (-1,s,{\tfrac {1}{2}})} 
     
  
The Legendre chi function :[ 3]  
  
    
      
        
          χ 
          
            s 
           
         
        ( 
        z 
        ) 
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              z 
              
                2 
                k 
                + 
                1 
               
             
            
              ( 
              2 
              k 
              + 
              1 
              
                ) 
                
                  s 
                 
               
             
           
         
        = 
        
          
            z 
            
              2 
              
                s 
               
             
           
         
        Φ 
        ( 
        
          z 
          
            2 
           
         
        , 
        s 
        , 
        
          
            
              1 
              2 
             
           
         
        ) 
      
    
    {\displaystyle \chi _{s}(z)=\sum _{k=0}^{\infty }{\frac {z^{2k+1}}{(2k+1)^{s}}}={\frac {z}{2^{s}}}\Phi (z^{2},s,{\tfrac {1}{2}})} 
     
  
The inverse tangent integral :[ 4]  
  
    
      
        
          
            
              Ti 
             
           
          
            s 
           
         
        ( 
        z 
        ) 
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  k 
                 
               
              
                z 
                
                  2 
                  k 
                  + 
                  1 
                 
               
             
            
              ( 
              2 
              k 
              + 
              1 
              
                ) 
                
                  s 
                 
               
             
           
         
        = 
        
          
            z 
            
              2 
              
                s 
               
             
           
         
        Φ 
        ( 
        − 
        
          z 
          
            2 
           
         
        , 
        s 
        , 
        
          
            
              1 
              2 
             
           
         
        ) 
      
    
    {\displaystyle {\textrm {Ti}}_{s}(z)=\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{(2k+1)^{s}}}={\frac {z}{2^{s}}}\Phi (-z^{2},s,{\tfrac {1}{2}})} 
     
  
The polygamma functions  for positive integers n :[ 5] [ 6]  
  
    
      
        
          ψ 
          
            ( 
            n 
            ) 
           
         
        ( 
        α 
        ) 
        = 
        ( 
        − 
        1 
        
          ) 
          
            n 
            + 
            1 
           
         
        n 
        ! 
        Φ 
        ( 
        1 
        , 
        n 
        + 
        1 
        , 
        α 
        ) 
       
     
    {\displaystyle \psi ^{(n)}(\alpha )=(-1)^{n+1}n!\Phi (1,n+1,\alpha )} 
   
  
The Clausen function :[ 7]  
  
    
      
        
          
            Cl 
           
          
            2 
           
         
        ( 
        z 
        ) 
        = 
        
          
            
              i 
              
                e 
                
                  − 
                  i 
                  z 
                 
               
             
            2 
           
         
        Φ 
        ( 
        
          e 
          
            − 
            i 
            z 
           
         
        , 
        2 
        , 
        1 
        ) 
        − 
        
          
            
              i 
              
                e 
                
                  i 
                  z 
                 
               
             
            2 
           
         
        Φ 
        ( 
        
          e 
          
            i 
            z 
           
         
        , 
        2 
        , 
        1 
        ) 
       
     
    {\displaystyle {\text{Cl}}_{2}(z)={\frac {ie^{-iz}}{2}}\Phi (e^{-iz},2,1)-{\frac {ie^{iz}}{2}}\Phi (e^{iz},2,1)} 
   
  
Integral representations [ edit ]  
The Lerch transcendent has an integral representation:
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        = 
        
          
            1 
            
              Γ 
              ( 
              s 
              ) 
             
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              
                t 
                
                  s 
                  − 
                  1 
                 
               
              
                e 
                
                  − 
                  a 
                  t 
                 
               
             
            
              1 
              − 
              z 
              
                e 
                
                  − 
                  t 
                 
               
             
           
         
         
        d 
        t 
       
     
    {\displaystyle \Phi (z,s,a)={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {t^{s-1}e^{-at}}{1-ze^{-t}}}\,dt} 
   
  
The proof is based on using the integral definition of the gamma function  to write
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        Γ 
        ( 
        s 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              z 
              
                n 
               
             
            
              ( 
              n 
              + 
              a 
              
                ) 
                
                  s 
                 
               
             
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          x 
          
            s 
           
         
        
          e 
          
            − 
            x 
           
         
        
          
            
              d 
              x 
             
            x 
           
         
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          t 
          
            s 
           
         
        
          z 
          
            n 
           
         
        
          e 
          
            − 
            ( 
            n 
            + 
            a 
            ) 
            t 
           
         
        
          
            
              d 
              t 
             
            t 
           
         
       
     
    {\displaystyle \Phi (z,s,a)\Gamma (s)=\sum _{n=0}^{\infty }{\frac {z^{n}}{(n+a)^{s}}}\int _{0}^{\infty }x^{s}e^{-x}{\frac {dx}{x}}=\sum _{n=0}^{\infty }\int _{0}^{\infty }t^{s}z^{n}e^{-(n+a)t}{\frac {dt}{t}}} 
   
  
and then interchanging the sum and integral. The resulting integral representation converges for 
  
    
      
        z 
        ∈ 
        
          C 
         
        ∖ 
        [ 
        1 
        , 
        ∞ 
        ) 
        , 
       
     
    {\displaystyle z\in \mathbb {C} \setminus [1,\infty ),} 
   
   Re(s ) > 0, and Re(a ) > 0. This analytically continues  
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
       
     
    {\displaystyle \Phi (z,s,a)} 
   
   to z  outside the unit disk . The integral formula also holds if z  = 1, Re(s ) > 1, and Re(a ) > 0; see Hurwitz zeta function .[ 8] [ 9]  
A contour integral  representation is given by
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        = 
        − 
        
          
            
              Γ 
              ( 
              1 
              − 
              s 
              ) 
             
            
              2 
              π 
              i 
             
           
         
        
          ∫ 
          
            C 
           
         
        
          
            
              ( 
              − 
              t 
              
                ) 
                
                  s 
                  − 
                  1 
                 
               
              
                e 
                
                  − 
                  a 
                  t 
                 
               
             
            
              1 
              − 
              z 
              
                e 
                
                  − 
                  t 
                 
               
             
           
         
         
        d 
        t 
       
     
    {\displaystyle \Phi (z,s,a)=-{\frac {\Gamma (1-s)}{2\pi i}}\int _{C}{\frac {(-t)^{s-1}e^{-at}}{1-ze^{-t}}}\,dt} 
   
  
where C  is a Hankel contour  counterclockwise around the positive real axis, not enclosing any of the points 
  
    
      
        t 
        = 
        log 
         
        ( 
        z 
        ) 
        + 
        2 
        k 
        π 
        i 
       
     
    {\displaystyle t=\log(z)+2k\pi i} 
   
   (for integer k ) which are poles  of the integrand. The integral assumes Re(a ) > 0.[ 10]  
Other integral representations [ edit ]  
A Hermite-like integral representation is given by
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        = 
        
          
            1 
            
              2 
              
                a 
                
                  s 
                 
               
             
           
         
        + 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              z 
              
                t 
               
             
            
              ( 
              a 
              + 
              t 
              
                ) 
                
                  s 
                 
               
             
           
         
         
        d 
        t 
        + 
        
          
            2 
            
              a 
              
                s 
                − 
                1 
               
             
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              sin 
               
              ( 
              s 
              arctan 
               
              ( 
              t 
              ) 
              − 
              t 
              a 
              log 
               
              ( 
              z 
              ) 
              ) 
             
            
              ( 
              1 
              + 
              
                t 
                
                  2 
                 
               
              
                ) 
                
                  s 
                  
                    / 
                   
                  2 
                 
               
              ( 
              
                e 
                
                  2 
                  π 
                  a 
                  t 
                 
               
              − 
              1 
              ) 
             
           
         
         
        d 
        t 
       
     
    {\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+\int _{0}^{\infty }{\frac {z^{t}}{(a+t)^{s}}}\,dt+{\frac {2}{a^{s-1}}}\int _{0}^{\infty }{\frac {\sin(s\arctan(t)-ta\log(z))}{(1+t^{2})^{s/2}(e^{2\pi at}-1)}}\,dt} 
   
  
for
  
    
      
        ℜ 
        ( 
        a 
        ) 
        > 
        0 
        ∧ 
        
          | 
         
        z 
        
          | 
         
        < 
        1 
       
     
    {\displaystyle \Re (a)>0\wedge |z|<1} 
   
  
and
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        = 
        
          
            1 
            
              2 
              
                a 
                
                  s 
                 
               
             
           
         
        + 
        
          
            
              
                log 
                
                  s 
                  − 
                  1 
                 
               
               
              ( 
              1 
              
                / 
               
              z 
              ) 
             
            
              z 
              
                a 
               
             
           
         
        Γ 
        ( 
        1 
        − 
        s 
        , 
        a 
        log 
         
        ( 
        1 
        
          / 
         
        z 
        ) 
        ) 
        + 
        
          
            2 
            
              a 
              
                s 
                − 
                1 
               
             
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              sin 
               
              ( 
              s 
              arctan 
               
              ( 
              t 
              ) 
              − 
              t 
              a 
              log 
               
              ( 
              z 
              ) 
              ) 
             
            
              ( 
              1 
              + 
              
                t 
                
                  2 
                 
               
              
                ) 
                
                  s 
                  
                    / 
                   
                  2 
                 
               
              ( 
              
                e 
                
                  2 
                  π 
                  a 
                  t 
                 
               
              − 
              1 
              ) 
             
           
         
         
        d 
        t 
       
     
    {\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+{\frac {\log ^{s-1}(1/z)}{z^{a}}}\Gamma (1-s,a\log(1/z))+{\frac {2}{a^{s-1}}}\int _{0}^{\infty }{\frac {\sin(s\arctan(t)-ta\log(z))}{(1+t^{2})^{s/2}(e^{2\pi at}-1)}}\,dt} 
   
  
for
  
    
      
        ℜ 
        ( 
        a 
        ) 
        > 
        0. 
       
     
    {\displaystyle \Re (a)>0.} 
   
  
Similar representations include
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        = 
        
          
            1 
            
              2 
              
                a 
                
                  s 
                 
               
             
           
         
        + 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              cos 
               
              ( 
              t 
              log 
               
              z 
              ) 
              sin 
               
              
                
                  ( 
                 
               
              s 
              arctan 
               
              
                
                  
                    t 
                    a 
                   
                 
               
              
                
                  ) 
                 
               
              − 
              sin 
               
              ( 
              t 
              log 
               
              z 
              ) 
              cos 
               
              
                
                  ( 
                 
               
              s 
              arctan 
               
              
                
                  
                    t 
                    a 
                   
                 
               
              
                
                  ) 
                 
               
            
            
              
                
                  ( 
                 
               
              
                a 
                
                  2 
                 
               
              + 
              
                t 
                
                  2 
                 
               
              
                
                  
                    ) 
                   
                 
                
                  
                    s 
                    2 
                   
                 
               
              tanh 
               
              π 
              t 
             
          
        
         
        d 
        t 
        , 
      
    
    {\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+\int _{0}^{\infty }{\frac {\cos(t\log z)\sin {\Big (}s\arctan {\tfrac {t}{a}}{\Big )}-\sin(t\log z)\cos {\Big (}s\arctan {\tfrac {t}{a}}{\Big )}}{{\big (}a^{2}+t^{2}{\big )}^{\frac {s}{2}}\tanh \pi t}}\,dt,} 
        
  
and
  
    
      
        Φ 
        ( 
        − 
        z 
        , 
        s 
        , 
        a 
        ) 
        = 
        
          
            1 
            
              2 
              
                a 
                
                  s 
                 
               
             
           
         
        + 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              cos 
               
              ( 
              t 
              log 
               
              z 
              ) 
              sin 
               
              
                
                  ( 
                 
               
              s 
              arctan 
               
              
                
                  
                    t 
                    a 
                   
                 
               
              
                
                  ) 
                 
               
              − 
              sin 
               
              ( 
              t 
              log 
               
              z 
              ) 
              cos 
               
              
                
                  ( 
                 
               
              s 
              arctan 
               
              
                
                  
                    t 
                    a 
                   
                 
               
              
                
                  ) 
                 
               
            
            
              
                
                  ( 
                 
               
              
                a 
                
                  2 
                 
               
              + 
              
                t 
                
                  2 
                 
               
              
                
                  
                    ) 
                   
                 
                
                  
                    s 
                    2 
                   
                 
               
              sinh 
               
              π 
              t 
             
          
        
         
        d 
        t 
        , 
      
    
    {\displaystyle \Phi (-z,s,a)={\frac {1}{2a^{s}}}+\int _{0}^{\infty }{\frac {\cos(t\log z)\sin {\Big (}s\arctan {\tfrac {t}{a}}{\Big )}-\sin(t\log z)\cos {\Big (}s\arctan {\tfrac {t}{a}}{\Big )}}{{\big (}a^{2}+t^{2}{\big )}^{\frac {s}{2}}\sinh \pi t}}\,dt,} 
        
  
holding for positive z  (and more generally wherever the integrals converge). Furthermore,
  
    
      
        Φ 
        ( 
        
          e 
          
            i 
            φ 
           
         
        , 
        s 
        , 
        a 
        ) 
        = 
        L 
        
          
            ( 
           
         
        
          
            
              φ 
              
                2 
                π 
               
             
           
         
        , 
        s 
        , 
        a 
        
          
            ) 
           
         
        = 
        
          
            1 
            
              a 
              
                s 
               
             
           
         
        + 
        
          
            1 
            
              2 
              Γ 
              ( 
              s 
              ) 
             
           
         
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              
                t 
                
                  s 
                  − 
                  1 
                 
               
              
                e 
                
                  − 
                  a 
                  t 
                 
               
              
                
                  ( 
                 
               
              
                e 
                
                  i 
                  φ 
                 
               
              − 
              
                e 
                
                  − 
                  t 
                 
               
              
                
                  ) 
                 
               
             
            
              cosh 
               
              
                t 
               
              − 
              cos 
               
              
                φ 
               
             
           
         
         
        d 
        t 
        , 
      
    
    {\displaystyle \Phi (e^{i\varphi },s,a)=L{\big (}{\tfrac {\varphi }{2\pi }},s,a{\big )}={\frac {1}{a^{s}}}+{\frac {1}{2\Gamma (s)}}\int _{0}^{\infty }{\frac {t^{s-1}e^{-at}{\big (}e^{i\varphi }-e^{-t}{\big )}}{\cosh {t}-\cos {\varphi }}}\,dt,} 
     
  
The last formula is also known as Lipschitz formula .
For λ rational, the summand is a root of unity , and thus  
  
    
      
        L 
        ( 
        λ 
        , 
        s 
        , 
        α 
        ) 
       
     
    {\displaystyle L(\lambda ,s,\alpha )} 
   
   may be expressed as a finite sum over the Hurwitz zeta function.  Suppose 
  
    
      
        λ 
        = 
        
          
            p 
            q 
           
         
       
     
    {\textstyle \lambda ={\frac {p}{q}}} 
   
   with 
  
    
      
        p 
        , 
        q 
        ∈ 
        
          Z 
         
       
     
    {\displaystyle p,q\in \mathbb {Z} } 
   
   and 
  
    
      
        q 
        > 
        0 
       
     
    {\displaystyle q>0} 
   
  . Then 
  
    
      
        z 
        = 
        ω 
        = 
        
          e 
          
            2 
            π 
            i 
            
              
                p 
                q 
               
             
           
         
       
     
    {\displaystyle z=\omega =e^{2\pi i{\frac {p}{q}}}} 
   
   and 
  
    
      
        
          ω 
          
            q 
           
         
        = 
        1 
       
     
    {\displaystyle \omega ^{q}=1} 
   
  .
  
    
      
        Φ 
        ( 
        ω 
        , 
        s 
        , 
        α 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ω 
              
                n 
               
             
            
              ( 
              n 
              + 
              α 
              
                ) 
                
                  s 
                 
               
             
           
         
        = 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            q 
            − 
            1 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            
              ω 
              
                q 
                n 
                + 
                m 
               
             
            
              ( 
              q 
              n 
              + 
              m 
              + 
              α 
              
                ) 
                
                  s 
                 
               
             
           
         
        = 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            q 
            − 
            1 
           
         
        
          ω 
          
            m 
           
         
        
          q 
          
            − 
            s 
           
         
        ζ 
        
          ( 
          
            s 
            , 
            
              
                
                  m 
                  + 
                  α 
                 
                q 
               
             
           
          ) 
         
       
     
    {\displaystyle \Phi (\omega ,s,\alpha )=\sum _{n=0}^{\infty }{\frac {\omega ^{n}}{(n+\alpha )^{s}}}=\sum _{m=0}^{q-1}\sum _{n=0}^{\infty }{\frac {\omega ^{qn+m}}{(qn+m+\alpha )^{s}}}=\sum _{m=0}^{q-1}\omega ^{m}q^{-s}\zeta \left(s,{\frac {m+\alpha }{q}}\right)} 
   
  
Various identities include:
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        = 
        
          z 
          
            n 
           
         
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        + 
        n 
        ) 
        + 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
            − 
            1 
           
         
        
          
            
              z 
              
                k 
               
             
            
              ( 
              k 
              + 
              a 
              
                ) 
                
                  s 
                 
               
             
           
         
       
     
    {\displaystyle \Phi (z,s,a)=z^{n}\Phi (z,s,a+n)+\sum _{k=0}^{n-1}{\frac {z^{k}}{(k+a)^{s}}}} 
   
  
and
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        − 
        1 
        , 
        a 
        ) 
        = 
        
          ( 
          
            a 
            + 
            z 
            
              
                ∂ 
                
                  ∂ 
                  z 
                 
               
             
           
          ) 
         
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
       
     
    {\displaystyle \Phi (z,s-1,a)=\left(a+z{\frac {\partial }{\partial z}}\right)\Phi (z,s,a)} 
   
  
and
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        + 
        1 
        , 
        a 
        ) 
        = 
        − 
        
          
            1 
            s 
           
         
        
          
            ∂ 
            
              ∂ 
              a 
             
           
         
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        . 
       
     
    {\displaystyle \Phi (z,s+1,a)=-{\frac {1}{s}}{\frac {\partial }{\partial a}}\Phi (z,s,a).} 
   
  
Series representations [ edit ]  
A series representation for the Lerch transcendent is given by
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        q 
        ) 
        = 
        
          
            1 
            
              1 
              − 
              z 
             
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            ( 
            
              
                
                  − 
                  z 
                 
                
                  1 
                  − 
                  z 
                 
               
             
            ) 
           
          
            n 
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        ( 
        − 
        1 
        
          ) 
          
            k 
           
         
        
          
            
              ( 
             
            
              n 
              k 
             
            
              ) 
             
           
         
        ( 
        q 
        + 
        k 
        
          ) 
          
            − 
            s 
           
         
        . 
       
     
    {\displaystyle \Phi (z,s,q)={\frac {1}{1-z}}\sum _{n=0}^{\infty }\left({\frac {-z}{1-z}}\right)^{n}\sum _{k=0}^{n}(-1)^{k}{\binom {n}{k}}(q+k)^{-s}.} 
   
  
(Note that 
  
    
      
        
          
            
              
                ( 
               
              
                n 
                k 
               
              
                ) 
               
             
           
         
      
    
    {\displaystyle {\tbinom {n}{k}}} 
     
   is a binomial coefficient .)
The series is valid for all s , and for complex z  with Re(z )<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.[ 11]  
A Taylor series  in the first parameter was given by Arthur Erdélyi . It may be written as the following series, which is valid for[ 12]  
  
    
      
        
          | 
          
            log 
             
            ( 
            z 
            ) 
           
          | 
         
        < 
        2 
        π 
        ; 
        s 
        ≠ 
        1 
        , 
        2 
        , 
        3 
        , 
        … 
        ; 
        a 
        ≠ 
        0 
        , 
        − 
        1 
        , 
        − 
        2 
        , 
        … 
       
     
    {\displaystyle \left|\log(z)\right|<2\pi ;s\neq 1,2,3,\dots ;a\neq 0,-1,-2,\dots } 
   
  
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        = 
        
          z 
          
            − 
            a 
           
         
        
          [ 
          
            Γ 
            ( 
            1 
            − 
            s 
            ) 
            
              
                ( 
                
                  − 
                  log 
                   
                  ( 
                  z 
                  ) 
                 
                ) 
               
              
                s 
                − 
                1 
               
             
            + 
            
              ∑ 
              
                k 
                = 
                0 
               
              
                ∞ 
               
             
            ζ 
            ( 
            s 
            − 
            k 
            , 
            a 
            ) 
            
              
                
                  
                    log 
                    
                      k 
                     
                   
                   
                  ( 
                  z 
                  ) 
                 
                
                  k 
                  ! 
                 
               
             
           
          ] 
         
       
     
    {\displaystyle \Phi (z,s,a)=z^{-a}\left[\Gamma (1-s)\left(-\log(z)\right)^{s-1}+\sum _{k=0}^{\infty }\zeta (s-k,a){\frac {\log ^{k}(z)}{k!}}\right]} 
   
  
If n  is a positive integer, then
  
    
      
        Φ 
        ( 
        z 
        , 
        n 
        , 
        a 
        ) 
        = 
        
          z 
          
            − 
            a 
           
         
        
          { 
          
            
              ∑ 
              
                
                  
                    k 
                    = 
                    0 
                   
                  
                    k 
                    ≠ 
                    n 
                    − 
                    1 
                   
                 
               
              
                ∞ 
               
             
            ζ 
            ( 
            n 
            − 
            k 
            , 
            a 
            ) 
            
              
                
                  
                    log 
                    
                      k 
                     
                   
                   
                  ( 
                  z 
                  ) 
                 
                
                  k 
                  ! 
                 
               
             
            + 
            
              [ 
              
                ψ 
                ( 
                n 
                ) 
                − 
                ψ 
                ( 
                a 
                ) 
                − 
                log 
                 
                ( 
                − 
                log 
                 
                ( 
                z 
                ) 
                ) 
               
              ] 
             
            
              
                
                  
                    log 
                    
                      n 
                      − 
                      1 
                     
                   
                   
                  ( 
                  z 
                  ) 
                 
                
                  ( 
                  n 
                  − 
                  1 
                  ) 
                  ! 
                 
               
             
           
          } 
         
        , 
       
     
    {\displaystyle \Phi (z,n,a)=z^{-a}\left\{\sum _{{k=0} \atop k\neq n-1}^{\infty }\zeta (n-k,a){\frac {\log ^{k}(z)}{k!}}+\left[\psi (n)-\psi (a)-\log(-\log(z))\right]{\frac {\log ^{n-1}(z)}{(n-1)!}}\right\},} 
   
  
where 
  
    
      
        ψ 
        ( 
        n 
        ) 
       
     
    {\displaystyle \psi (n)} 
   
   is the digamma function .
A Taylor series  in the third variable is given by
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        + 
        x 
        ) 
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            ∞ 
           
         
        Φ 
        ( 
        z 
        , 
        s 
        + 
        k 
        , 
        a 
        ) 
        ( 
        s 
        
          ) 
          
            k 
           
         
        
          
            
              ( 
              − 
              x 
              
                ) 
                
                  k 
                 
               
             
            
              k 
              ! 
             
           
         
        ; 
        
          | 
         
        x 
        
          | 
         
        < 
        ℜ 
        ( 
        a 
        ) 
        , 
       
     
    {\displaystyle \Phi (z,s,a+x)=\sum _{k=0}^{\infty }\Phi (z,s+k,a)(s)_{k}{\frac {(-x)^{k}}{k!}};|x|<\Re (a),} 
   
  
where 
  
    
      
        ( 
        s 
        
          ) 
          
            k 
           
         
       
     
    {\displaystyle (s)_{k}} 
   
   is the Pochhammer symbol .
Series at a  = −n  is given by
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        = 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
           
         
        
          
            
              z 
              
                k 
               
             
            
              ( 
              a 
              + 
              k 
              
                ) 
                
                  s 
                 
               
             
           
         
        + 
        
          z 
          
            n 
           
         
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        1 
        − 
        m 
        − 
        s 
        
          ) 
          
            m 
           
         
        
          Li 
          
            s 
            + 
            m 
           
         
         
        ( 
        z 
        ) 
        
          
            
              ( 
              a 
              + 
              n 
              
                ) 
                
                  m 
                 
               
             
            
              m 
              ! 
             
           
         
        ; 
          
        a 
        → 
        − 
        n 
       
     
    {\displaystyle \Phi (z,s,a)=\sum _{k=0}^{n}{\frac {z^{k}}{(a+k)^{s}}}+z^{n}\sum _{m=0}^{\infty }(1-m-s)_{m}\operatorname {Li} _{s+m}(z){\frac {(a+n)^{m}}{m!}};\ a\rightarrow -n} 
   
  
A special case for n  = 0 has the following series
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        = 
        
          
            1 
            
              a 
              
                s 
               
             
           
         
        + 
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        1 
        − 
        m 
        − 
        s 
        
          ) 
          
            m 
           
         
        
          Li 
          
            s 
            + 
            m 
           
         
         
        ( 
        z 
        ) 
        
          
            
              a 
              
                m 
               
             
            
              m 
              ! 
             
           
         
        ; 
        
          | 
         
        a 
        
          | 
         
        < 
        1 
        , 
       
     
    {\displaystyle \Phi (z,s,a)={\frac {1}{a^{s}}}+\sum _{m=0}^{\infty }(1-m-s)_{m}\operatorname {Li} _{s+m}(z){\frac {a^{m}}{m!}};|a|<1,} 
   
  
where 
  
    
      
        
          Li 
          
            s 
           
         
         
        ( 
        z 
        ) 
       
     
    {\displaystyle \operatorname {Li} _{s}(z)} 
   
   is the polylogarithm .
An asymptotic series  for 
  
    
      
        s 
        → 
        − 
        ∞ 
       
     
    {\displaystyle s\rightarrow -\infty } 
   
  
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        = 
        
          z 
          
            − 
            a 
           
         
        Γ 
        ( 
        1 
        − 
        s 
        ) 
        
          ∑ 
          
            k 
            = 
            − 
            ∞ 
           
          
            ∞ 
           
         
        [ 
        2 
        k 
        π 
        i 
        − 
        log 
         
        ( 
        z 
        ) 
        
          ] 
          
            s 
            − 
            1 
           
         
        
          e 
          
            2 
            k 
            π 
            a 
            i 
           
         
       
     
    {\displaystyle \Phi (z,s,a)=z^{-a}\Gamma (1-s)\sum _{k=-\infty }^{\infty }[2k\pi i-\log(z)]^{s-1}e^{2k\pi ai}} 
   
  
for 
  
    
      
        
          | 
         
        a 
        
          | 
         
        < 
        1 
        ; 
        ℜ 
        ( 
        s 
        ) 
        < 
        0 
        ; 
        z 
        ∉ 
        ( 
        − 
        ∞ 
        , 
        0 
        ) 
       
     
    {\displaystyle |a|<1;\Re (s)<0;z\notin (-\infty ,0)} 
   
  
and
  
    
      
        Φ 
        ( 
        − 
        z 
        , 
        s 
        , 
        a 
        ) 
        = 
        
          z 
          
            − 
            a 
           
         
        Γ 
        ( 
        1 
        − 
        s 
        ) 
        
          ∑ 
          
            k 
            = 
            − 
            ∞ 
           
          
            ∞ 
           
         
        [ 
        ( 
        2 
        k 
        + 
        1 
        ) 
        π 
        i 
        − 
        log 
         
        ( 
        z 
        ) 
        
          ] 
          
            s 
            − 
            1 
           
         
        
          e 
          
            ( 
            2 
            k 
            + 
            1 
            ) 
            π 
            a 
            i 
           
         
       
     
    {\displaystyle \Phi (-z,s,a)=z^{-a}\Gamma (1-s)\sum _{k=-\infty }^{\infty }[(2k+1)\pi i-\log(z)]^{s-1}e^{(2k+1)\pi ai}} 
   
  
for 
  
    
      
        
          | 
         
        a 
        
          | 
         
        < 
        1 
        ; 
        ℜ 
        ( 
        s 
        ) 
        < 
        0 
        ; 
        z 
        ∉ 
        ( 
        0 
        , 
        ∞ 
        ) 
        . 
       
     
    {\displaystyle |a|<1;\Re (s)<0;z\notin (0,\infty ).} 
   
  
An asymptotic series in the incomplete gamma function 
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        = 
        
          
            1 
            
              2 
              
                a 
                
                  s 
                 
               
             
           
         
        + 
        
          
            1 
            
              z 
              
                a 
               
             
           
         
        
          ∑ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              
                e 
                
                  − 
                  2 
                  π 
                  i 
                  ( 
                  k 
                  − 
                  1 
                  ) 
                  a 
                 
               
              Γ 
              ( 
              1 
              − 
              s 
              , 
              a 
              ( 
              − 
              2 
              π 
              i 
              ( 
              k 
              − 
              1 
              ) 
              − 
              log 
               
              ( 
              z 
              ) 
              ) 
              ) 
             
            
              ( 
              − 
              2 
              π 
              i 
              ( 
              k 
              − 
              1 
              ) 
              − 
              log 
               
              ( 
              z 
              ) 
              
                ) 
                
                  1 
                  − 
                  s 
                 
               
             
           
         
        + 
        
          
            
              
                e 
                
                  2 
                  π 
                  i 
                  k 
                  a 
                 
               
              Γ 
              ( 
              1 
              − 
              s 
              , 
              a 
              ( 
              2 
              π 
              i 
              k 
              − 
              log 
               
              ( 
              z 
              ) 
              ) 
              ) 
             
            
              ( 
              2 
              π 
              i 
              k 
              − 
              log 
               
              ( 
              z 
              ) 
              
                ) 
                
                  1 
                  − 
                  s 
                 
               
             
           
         
       
     
    {\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+{\frac {1}{z^{a}}}\sum _{k=1}^{\infty }{\frac {e^{-2\pi i(k-1)a}\Gamma (1-s,a(-2\pi i(k-1)-\log(z)))}{(-2\pi i(k-1)-\log(z))^{1-s}}}+{\frac {e^{2\pi ika}\Gamma (1-s,a(2\pi ik-\log(z)))}{(2\pi ik-\log(z))^{1-s}}}} 
   
  
for 
  
    
      
        
          | 
         
        a 
        
          | 
         
        < 
        1 
        ; 
        ℜ 
        ( 
        s 
        ) 
        < 
        0. 
       
     
    {\displaystyle |a|<1;\Re (s)<0.} 
   
  
The representation as a generalized hypergeometric function  is[ 13]  
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        α 
        ) 
        = 
        
          
            1 
            
              α 
              
                s 
               
             
           
         
        
          
           
          
            s 
            + 
            1 
           
         
        
          F 
          
            s 
           
         
        
          ( 
          
            
              
                
                  
                    1 
                    , 
                    α 
                    , 
                    α 
                    , 
                    α 
                    , 
                    ⋯ 
                   
                 
                
                  
                    1 
                    + 
                    α 
                    , 
                    1 
                    + 
                    α 
                    , 
                    1 
                    + 
                    α 
                    , 
                    ⋯ 
                   
                 
               
             
            ∣ 
            z 
           
          ) 
         
        . 
       
     
    {\displaystyle \Phi (z,s,\alpha )={\frac {1}{\alpha ^{s}}}{}_{s+1}F_{s}\left({\begin{array}{c}1,\alpha ,\alpha ,\alpha ,\cdots \\1+\alpha ,1+\alpha ,1+\alpha ,\cdots \\\end{array}}\mid z\right).} 
   
  
Asymptotic expansion [ edit ]  
The polylogarithm function 
  
    
      
        
          
            L 
            i 
           
          
            n 
           
         
        ( 
        z 
        ) 
       
     
    {\displaystyle \mathrm {Li} _{n}(z)} 
   
   is defined as
  
    
      
        
          
            L 
            i 
           
          
            0 
           
         
        ( 
        z 
        ) 
        = 
        
          
            z 
            
              1 
              − 
              z 
             
           
         
        , 
         
        
          
            L 
            i 
           
          
            − 
            n 
           
         
        ( 
        z 
        ) 
        = 
        z 
        
          
            d 
            
              d 
              z 
             
           
         
        
          
            L 
            i 
           
          
            1 
            − 
            n 
           
         
        ( 
        z 
        ) 
        . 
       
     
    {\displaystyle \mathrm {Li} _{0}(z)={\frac {z}{1-z}},\qquad \mathrm {Li} _{-n}(z)=z{\frac {d}{dz}}\mathrm {Li} _{1-n}(z).} 
   
  
Let
  
    
      
        
          Ω 
          
            a 
           
         
        ≡ 
        
          
            { 
            
              
                
                  
                    C 
                   
                  ∖ 
                  [ 
                  1 
                  , 
                  ∞ 
                  ) 
                 
                
                  
                    if  
                   
                  ℜ 
                  a 
                  > 
                  0 
                  , 
                 
               
              
                
                  
                    z 
                    ∈ 
                    
                      C 
                     
                    , 
                    
                      | 
                     
                    z 
                    
                      | 
                     
                    < 
                    1 
                   
                 
                
                  
                    if  
                   
                  ℜ 
                  a 
                  ≤ 
                  0. 
                 
               
             
             
           
         
       
     
    {\displaystyle \Omega _{a}\equiv {\begin{cases}\mathbb {C} \setminus [1,\infty )&{\text{if }}\Re a>0,\\{z\in \mathbb {C} ,|z|<1}&{\text{if }}\Re a\leq 0.\end{cases}}} 
   
  
For 
  
    
      
        
          | 
         
        
          A 
          r 
          g 
         
        ( 
        a 
        ) 
        
          | 
         
        < 
        π 
        , 
        s 
        ∈ 
        
          C 
         
       
     
    {\displaystyle |\mathrm {Arg} (a)|<\pi ,s\in \mathbb {C} } 
   
   and 
  
    
      
        z 
        ∈ 
        
          Ω 
          
            a 
           
         
       
     
    {\displaystyle z\in \Omega _{a}} 
   
  , an asymptotic expansion of 
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
       
     
    {\displaystyle \Phi (z,s,a)} 
   
   for large 
  
    
      
        a 
       
     
    {\displaystyle a} 
   
   and fixed 
  
    
      
        s 
       
     
    {\displaystyle s} 
   
   and 
  
    
      
        z 
       
     
    {\displaystyle z} 
   
   is given by
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        = 
        
          
            1 
            
              1 
              − 
              z 
             
           
         
        
          
            1 
            
              a 
              
                s 
               
             
           
         
        + 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            N 
            − 
            1 
           
         
        
          
            
              ( 
              − 
              1 
              
                ) 
                
                  n 
                 
               
              
                
                  L 
                  i 
                 
                
                  − 
                  n 
                 
               
              ( 
              z 
              ) 
             
            
              n 
              ! 
             
           
         
        
          
            
              ( 
              s 
              
                ) 
                
                  n 
                 
               
             
            
              a 
              
                n 
                + 
                s 
               
             
           
         
        + 
        O 
        ( 
        
          a 
          
            − 
            N 
            − 
            s 
           
         
        ) 
       
     
    {\displaystyle \Phi (z,s,a)={\frac {1}{1-z}}{\frac {1}{a^{s}}}+\sum _{n=1}^{N-1}{\frac {(-1)^{n}\mathrm {Li} _{-n}(z)}{n!}}{\frac {(s)_{n}}{a^{n+s}}}+O(a^{-N-s})} 
   
  
for 
  
    
      
        N 
        ∈ 
        
          N 
         
       
     
    {\displaystyle N\in \mathbb {N} } 
   
  , where 
  
    
      
        ( 
        s 
        
          ) 
          
            n 
           
         
        = 
        s 
        ( 
        s 
        + 
        1 
        ) 
        ⋯ 
        ( 
        s 
        + 
        n 
        − 
        1 
        ) 
       
     
    {\displaystyle (s)_{n}=s(s+1)\cdots (s+n-1)} 
   
   is the Pochhammer symbol .[ 14]  
Let
  
    
      
        f 
        ( 
        z 
        , 
        x 
        , 
        a 
        ) 
        ≡ 
        
          
            
              1 
              − 
              ( 
              z 
              
                e 
                
                  − 
                  x 
                 
               
              
                ) 
                
                  1 
                  − 
                  a 
                 
               
             
            
              1 
              − 
              z 
              
                e 
                
                  − 
                  x 
                 
               
             
           
         
        . 
       
     
    {\displaystyle f(z,x,a)\equiv {\frac {1-(ze^{-x})^{1-a}}{1-ze^{-x}}}.} 
   
  
Let 
  
    
      
        
          C 
          
            n 
           
         
        ( 
        z 
        , 
        a 
        ) 
       
     
    {\displaystyle C_{n}(z,a)} 
   
   be its Taylor coefficients at 
  
    
      
        x 
        = 
        0 
       
     
    {\displaystyle x=0} 
   
  . Then for fixed 
  
    
      
        N 
        ∈ 
        
          N 
         
        , 
        ℜ 
        a 
        > 
        1 
       
     
    {\displaystyle N\in \mathbb {N} ,\Re a>1} 
   
   and 
  
    
      
        ℜ 
        s 
        > 
        0 
       
     
    {\displaystyle \Re s>0} 
   
  ,
  
    
      
        Φ 
        ( 
        z 
        , 
        s 
        , 
        a 
        ) 
        − 
        
          
            
              
                
                  L 
                  i 
                 
                
                  s 
                 
               
              ( 
              z 
              ) 
             
            
              z 
              
                a 
               
             
           
         
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            N 
            − 
            1 
           
         
        
          C 
          
            n 
           
         
        ( 
        z 
        , 
        a 
        ) 
        
          
            
              ( 
              s 
              
                ) 
                
                  n 
                 
               
             
            
              a 
              
                n 
                + 
                s 
               
             
           
         
        + 
        O 
        
          ( 
          
            ( 
            ℜ 
            a 
            
              ) 
              
                1 
                − 
                N 
                − 
                s 
               
             
            + 
            a 
            
              z 
              
                − 
                ℜ 
                a 
               
             
           
          ) 
         
        , 
       
     
    {\displaystyle \Phi (z,s,a)-{\frac {\mathrm {Li} _{s}(z)}{z^{a}}}=\sum _{n=0}^{N-1}C_{n}(z,a){\frac {(s)_{n}}{a^{n+s}}}+O\left((\Re a)^{1-N-s}+az^{-\Re a}\right),} 
   
  
as 
  
    
      
        ℜ 
        a 
        → 
        ∞ 
       
     
    {\displaystyle \Re a\to \infty } 
   
  .[ 15]  
The Lerch transcendent is implemented as LerchPhi in Maple  and Mathematica , and as lerchphi in mpmath  and SymPy .
^   Lerch, Mathias  (1887), "Note sur la fonction 
  
    
      
        
          
            
              K 
             
           
          ( 
          w 
          , 
          x 
          , 
          s 
          ) 
          = 
          
            ∑ 
            
              k 
              = 
              0 
             
            
              ∞ 
             
           
          
            
              
                e 
                
                  2 
                  k 
                  π 
                  i 
                  x 
                 
               
              
                ( 
                w 
                + 
                k 
                
                  ) 
                  
                    s 
                   
                 
               
             
           
         
      
      
    {\displaystyle \scriptstyle {\mathfrak {K}}(w,x,s)=\sum _{k=0}^{\infty }{e^{2k\pi ix} \over (w+k)^{s}}} 
   
  " , Acta Mathematica  (in French), 11  (1– 4): 19– 24, doi :10.1007/BF02612318  , JFM  19.0438.01 , MR  1554747 , S2CID  121885446  
 
^ a   b   c   d   e   f   Guillera & Sondow 2008 , p. 248–249 
 
^   Weisstein, Eric W. "Inverse Tangent Integral" . mathworld.wolfram.com . Retrieved 2024-10-13  .  
 
^   The polygamma function has the series representation
  
    
      
        
          ψ 
          
            ( 
            m 
            ) 
           
         
        ( 
        z 
        ) 
        = 
        ( 
        − 
        1 
        
          ) 
          
            m 
            + 
            1 
           
         
         
        m 
        ! 
        
          ∑ 
          
            k 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            1 
            
              ( 
              z 
              + 
              k 
              
                ) 
                
                  m 
                  + 
                  1 
                 
               
             
           
         
       
     
    {\displaystyle \psi ^{(m)}(z)=(-1)^{m+1}\,m!\sum _{k=0}^{\infty }{\frac {1}{(z+k)^{m+1}}}} 
   
  
which holds for integer values of m  > 0  and any complex z   not equal to a negative integer. 
 
^   Weisstein, Eric W. "Polygamma Function" . mathworld.wolfram.com . Retrieved 2024-10-14  .  
 
^   Weisstein, Eric W. "Clausen Function" . mathworld.wolfram.com . Retrieved 2024-10-14  .  
 
^   Bateman & Erdélyi 1953 , p. 27 
 
^   Guillera & Sondow 2008 , Lemma 2.1 and 2.2 
 
^   Bateman & Erdélyi 1953 , p. 28 
 
^   "The Analytic Continuation of the Lerch Transcendent and the Riemann Zeta Function" . 27 April 2020. Retrieved 28 April  2020 . 
 
^   B. R. Johnson (1974). "Generalized Lerch zeta function" . Pacific J. Math . 53  (1): 189– 193. doi :10.2140/pjm.1974.53.189  .  
 
^   Gottschalk, J. E.; Maslen, E. N. (1988). "Reduction formulae for generalized hypergeometric functions  of one variable". J. Phys. A . 21  (9): 1983– 1998. Bibcode :1988JPhA...21.1983G . doi :10.1088/0305-4470/21/9/015 .  
 
^   Ferreira, Chelo; López, José L. (October 2004). "Asymptotic expansions of the Hurwitz–Lerch zeta function" . Journal of Mathematical Analysis and Applications . 298  (1): 210– 224. doi :10.1016/j.jmaa.2004.05.040  .  
 
^   Cai, Xing Shi; López, José L. (10 June 2019). "A note on the asymptotic expansion of the Lerch's transcendent". Integral Transforms and Special Functions . 30  (10): 844– 855. arXiv :1806.01122  . doi :10.1080/10652469.2019.1627530 . S2CID  119619877 .  
 
  
Apostol, T. M. (2010), "Lerch's Transcendent" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions  , Cambridge University Press, ISBN  978-0-521-19225-5  , MR  2723248   .. 
Bateman, H. ; Erdélyi, A.  (1953), Higher Transcendental Functions, Vol. I   (PDF) , New York: McGraw-Hill . (See § 1.11, "The function Ψ(z ,s ,v )", p. 27) 
Gradshteyn, Izrail Solomonovich ; Ryzhik, Iosif Moiseevich ; Geronimus, Yuri Veniaminovich ; Tseytlin, Michail Yulyevich ; Jeffrey, Alan (2015) [October 2014]. "9.55.". In Zwillinger, Daniel; Moll, Victor Hugo  (eds.). Table of Integrals, Series, and Products  . Translated by Scripta Technica, Inc. (8 ed.). Academic Press. ISBN  978-0-12-384933-5  . LCCN  2014010276 . 
Guillera, Jesus; Sondow, Jonathan (2008), "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent", The Ramanujan Journal , 16  (3): 247– 270, arXiv :math.NT/0506319  , doi :10.1007/s11139-007-9102-0 , MR  2429900 , S2CID  119131640   . (Includes various basic identities in the introduction.) 
Jackson, M. (1950), "On Lerch's transcendent and the basic bilateral hypergeometric series 2 ψ 2 ", J. London Math. Soc. , 25  (3): 189– 196, doi :10.1112/jlms/s1-25.3.189 , MR  0036882   . 
Johansson, F.; Blagouchine, Ia. (2019), "Computing Stieltjes constants using complex integration", Mathematics of Computation , 88  (318): 1829– 1850, arXiv :1804.01679  , doi :10.1090/mcom/3401 , MR  3925487 , S2CID  4619883   . 
Laurinčikas, Antanas; Garunkštis, Ramūnas (2002), The Lerch zeta-function , Dordrecht: Kluwer Academic Publishers, ISBN  978-1-4020-1014-9  , MR  1979048   . 
Aksenov, Sergej V.; Jentschura, Ulrich D. (2002), C and Mathematica Programs for Calculation of Lerch's Transcendent   . 
Ramunas Garunkstis, Home Page   (2005) (Provides numerous references and preprints.)  
Garunkstis, Ramunas (2004). "Approximation of the Lerch Zeta Function"  (PDF) . Lithuanian Mathematical Journal . 44  (2): 140– 144. doi :10.1023/B:LIMA.0000033779.41365.a5 . S2CID  123059665 .  
Kanemitsu, S.; Tanigawa, Y.; Tsukada, H. (2015). "A generalization of Bochner's formula" .   Kanemitsu, S.; Tanigawa, Y.; Tsukada, H. (2004). "A generalization of Bochner's formula" . Hardy-Ramanujan Journal . 27 . doi :10.46298/hrj.2004.150  .  
Weisstein, Eric W.  "Lerch Transcendent" . MathWorld  . 
Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Lerch's Transcendent" , NIST Handbook of Mathematical Functions  , Cambridge University Press, ISBN  978-0-521-19225-5  , MR  2723248  .