Distribution
|
PDF/PMF
|
Mean
|
Variance
|
Bernoulli
|
|
|
|
Geometric
|
|
|
|
Binomial B(n, p)
|
|
np
|
np(1 - p)
|
Poisson Pois(?)
|
|
|
|
Uniform (continuous) U(a, b)
|
|
|
|
Uniform (discrete) U(a, b)
|
|
|
|
Normal N(µ, s2)
|
|
µ
|
|
Chi-squared ?2k
|
|
k
|
2k
|
Gamma G(k, ?)
|
|
![{\displaystyle \scriptstyle \operatorname {E} [X]=k\theta \!}](/media/api/rest_v1/media/math/render/svg/4bcd0564c15fa09e51ad6cef42d662ef6d1dca35)
![{\displaystyle \scriptstyle \operatorname {E} [\ln X]=\psi (k)+\ln(\theta )\!}](/media/api/rest_v1/media/math/render/svg/ade84f1fd2e20c78ef0cf51012ad6626335092c2) (see digamma function)
|
![{\displaystyle \scriptstyle \operatorname {Var} [X]=k\theta ^{2}\,\!}](/media/api/rest_v1/media/math/render/svg/333617e4e5bd65bdbe335c76c1a7d0327573320e)
![{\displaystyle \scriptstyle \operatorname {Var} [\ln X]=\psi _{1}(k)\!}](/media/api/rest_v1/media/math/render/svg/7633714acaea7355cb1750b03b1c68d8053d6196) (see trigamma function )
|
Exponential Exp(?)
|
? e-?x
|
?-1
|
?-2
|
Multivariate normal N(µ, S)
|
 exists only when S is positive-definite
|
µ
|
S
|
Degenerate da
|
|
|
|
Laplace L(µ, b)
|
|
µ
|
2b2
|
Negative Binomial NB(r, p)
|
involving a binomial coefficient
|
|
|
Cauchy Cauchy(µ, ?)
|
|
undefined
|
undefined
|