Jump to content

User:RamakrishnaJB/sandbox

From Wikipedia, the free encyclopedia

Marine Seasonal Succession Dynamics

[edit]

As bacterial populations have unique metabolisms and resource preferences, the use of high-resolution time-series analysis of bacterial compositions allows for the identification of patterns in seasonal bacterial succession.[1] Differences in bacterial community compositions give rise to particular permutations of interspecies bacterial interactions with photosynthetic phytoplankton, protist grazers, and phages thereby impacting seasonality dynamics. Statistical methods used to verify patterns in population dynamics and composition are demonstrated to be replicable over some years, and environmental factors served as predictors of these temporal patterns.[2] Most research activity for bacterioplankton currently occurs in the temperate waters of the northern hemisphere from 30°N to the Arctic Circle at 66°N.[1]

Seasonal Succession in Temperate Regions

[edit]

As seasonal successions of phytoplankton populations follow a consistent recurring pattern, bacterial dynamics and phytoplankton succession can be correlated.[1] In general, seasonal changes in bacterial composition follow changes in temperature and chlorophyll a, while nutrient availability limits bacterioplankton growth rates.[3][4][5][6][7][8] During water column mixing in late autumn/winter, nutrients brought to the surface kicks start a distinct diatom spring bloom followed by dinoflagellates.[1] After the spring bloom, bacterial production and growth become elevated due to the release of Dissolved organic matter (DOM) from phytoplankton decay.[9][10] In this early succession stage, members of the class Flavobacteria (Bacteroidetes) are typically the dominant components of the bacterial community.[11][12] Genome analysis and meta-transcriptomics have uncovered the presence of bacteria containing multiple hydrolytic enzymes facilitating the degradation and assimilation of DOM.[13][14][15][16] During spring blooms, some members of the Roseobacter clade (Alphaproteobacteria) and some Gammaproteobacteria are usually associated with DOM degradation.[10][11] As temperatures increase and the nutrients from the spring bloom gets depleted, smaller phytoplankton and cyanobacteria grow in the now oligotrophic waters.[1]

As waters become stratified in summer, Roseobacter, SAR86 (Gammaproteobacteria), and SAR11 (Alphaproteobacteria) clades of bacteria increase in abundance.[17][18] The frequently observed autumn diatom/dinoflagellate blooms are correlated with supplementary nutrient inputs and high-frequency sampling in the Baltic Sea found that in autumn, Actinobacteria generally increase followed by different autumn-specific Flavobacteria, SAR11, and Planctomycetes.[11]

In the Mediterranean Sea, deep winter mixing allows members of the SAR11 clade to achieve increased diversity as the oligotrophic populations that once dominated during the summer stratification die off slowly.[19] Among archaea in the Mediterranean Sea, Thaumarchaeota Marine Group I (MGI) and Euryarchaeota Marine Group II (MGII.B) populations became dominant in winter.[20] While in the Baltic Sea, winter mixing brings Epsilon-proteobacteria and archaea populations to the surface from their deep habitat.[11]

  1. ^ a b c d e Bunse, Carina; Pinhassi, Jarone (June 2017). "Marine Bacterioplankton Seasonal Succession Dynamics". Trends in Microbiology. 25 (6): 494–505. doi:10.1016/j.tim.2016.12.013. ISSN 1878-4380. PMID 28108182.
  2. ^ Fuhrman, Jed A.; Hewson, Ian; Schwalbach, Michael S.; Steele, Joshua A.; Brown, Mark V.; Naeem, Shahid (2006-08-29). "Annually reoccurring bacterial communities are predictable from ocean conditions". Proceedings of the National Academy of Sciences of the United States of America. 103 (35): 13104–13109. doi:10.1073/pnas.0602399103. ISSN 0027-8424. PMC 1559760. PMID 16938845.{{cite journal}}: CS1 maint: PMC format (link)
  3. ^ Pinhassi, Jarone; Hagström, Åke (2000-06-15). "Seasonal succession in marine bacterioplankton". Aquatic Microbial Ecology. 21 (3): 245–256. doi:10.3354/ame021245. ISSN 0948-3055.
  4. ^ Pinhassi, Jarone; Gómez-Consarnau, Laura; Alonso-Sáez, Laura; Sala, Maria Montserrat; Vidal, Montserrat; Pedrós-Alió, Carlos; Gasol, Josep M. (2006-10-10). "Seasonal changes in bacterioplankton nutrient limitation and their effects on bacterial community composition in the NW Mediterranean Sea". Aquatic Microbial Ecology. 44 (3): 241–252. doi:10.3354/ame044241. ISSN 0948-3055.
  5. ^ Sapp, Melanie; Wichels, Antje; Wiltshire, Karen H.; Gerdts, Gunnar (2007-03-01). "Bacterial community dynamics during the winter–spring transition in the North Sea". FEMS Microbiology Ecology. 59 (3): 622–637. doi:10.1111/j.1574-6941.2006.00238.x. ISSN 0168-6496.
  6. ^ Gilbert, Jack A.; Field, Dawn; Swift, Paul; Newbold, Lindsay; Oliver, Anna; Smyth, Tim; Somerfield, Paul J.; Huse, Sue; Joint, Ian (2009-12-01). "The seasonal structure of microbial communities in the Western English Channel". Environmental Microbiology. 11 (12): 3132–3139. doi:10.1111/j.1462-2920.2009.02017.x. ISSN 1462-2920.
  7. ^ Andersson, Anders F.; Riemann, Lasse; Bertilsson, Stefan (February 2010). "Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities". The ISME journal. 4 (2): 171–181. doi:10.1038/ismej.2009.108. ISSN 1751-7370. PMID 19829318.
  8. ^ Gilbert, Jack A.; Steele, Joshua A.; Caporaso, J. Gregory; Steinbrück, Lars; Reeder, Jens; Temperton, Ben; Huse, Susan; McHardy, Alice C.; Knight, Rob (February 2012). "Defining seasonal marine microbial community dynamics". The ISME journal. 6 (2): 298–308. doi:10.1038/ismej.2011.107. ISSN 1751-7370. PMC 3260500. PMID 21850055.{{cite journal}}: CS1 maint: PMC format (link)
  9. ^ Riemann, Lasse; Steward, Grieg F.; Azam, Farooq (2000-2). "Dynamics of Bacterial Community Composition and Activity during a Mesocosm Diatom Bloom". Applied and Environmental Microbiology. 66 (2): 578–587. ISSN 0099-2240. PMC 91866. PMID 10653721. {{cite journal}}: Check date values in: |date= (help)CS1 maint: PMC format (link)
  10. ^ a b Buchan, Alison; LeCleir, Gary R.; Gulvik, Christopher A.; González, José M. (October 2014). "Master recyclers: features and functions of bacteria associated with phytoplankton blooms". Nature Reviews. Microbiology. 12 (10): 686–698. doi:10.1038/nrmicro3326. ISSN 1740-1534. PMID 25134618.
  11. ^ a b c d Lindh, Markus V.; Sjöstedt, Johanna; Andersson, Anders F.; Baltar, Federico; Hugerth, Luisa W.; Lundin, Daniel; Muthusamy, Saraladevi; Legrand, Catherine; Pinhassi, Jarone (July 2015). "Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling". Environmental Microbiology. 17 (7): 2459–2476. doi:10.1111/1462-2920.12720. ISSN 1462-2920. PMID 25403576.
  12. ^ Alderkamp, Anne-Carlijn; Sintes, Eva; Herndl, Gerhard J. (2006-12-21). "Abundance and activity of major groups of prokaryotic plankton in the coastal North Sea during spring and summer". Aquatic Microbial Ecology. 45 (3): 237–246. doi:10.3354/ame045237. ISSN 0948-3055.
  13. ^ Fernández-Gómez, Beatriz; Richter, Michael; Schüler, Margarete; Pinhassi, Jarone; Acinas, Silvia G.; González, José M.; Pedrós-Alió, Carlos (May 2013). "Ecology of marine Bacteroidetes: a comparative genomics approach". The ISME journal. 7 (5): 1026–1037. doi:10.1038/ismej.2012.169. ISSN 1751-7370. PMC 3635232. PMID 23303374.{{cite journal}}: CS1 maint: PMC format (link)
  14. ^ Teeling, Hanno; Fuchs, Bernhard M.; Becher, Dörte; Klockow, Christine; Gardebrecht, Antje; Bennke, Christin M.; Kassabgy, Mariette; Huang, Sixing; Mann, Alexander J. (2012-05-04). "Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom". Science (New York, N.Y.). 336 (6081): 608–611. doi:10.1126/science.1218344. ISSN 1095-9203. PMID 22556258.
  15. ^ Teeling, Hanno; Fuchs, Bernhard M; Bennke, Christin M; Krüger, Karen; Chafee, Meghan; Kappelmann, Lennart; Reintjes, Greta; Waldmann, Jost; Quast, Christian. "Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms". eLife. 5. doi:10.7554/eLife.11888. ISSN 2050-084X. PMC 4829426. PMID 27054497.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  16. ^ Taylor, Joe D; Cottingham, Samuel D; Billinge, Jack; Cunliffe, Michael (2014-01). "Seasonal microbial community dynamics correlate with phytoplankton-derived polysaccharides in surface coastal waters". The ISME Journal. 8 (1): 245–248. doi:10.1038/ismej.2013.178. ISSN 1751-7362. PMC 3869024. PMID 24132076. {{cite journal}}: Check date values in: |date= (help)CS1 maint: PMC format (link)
  17. ^ Agawin, Nona S. R.; Duarte, Carlos M.; Agustí, Susana (1998-09-03). "Growth and abundance of Synechococcus sp. in a Mediterranean Bay: seasonality and relationship with temperature". Marine Ecology Progress Series. 170: 45–53. doi:10.3354/meps170045. ISSN 0171-8630.
  18. ^ Alonso-Sáez, Laura; Balagué, Vanessa; Sà, Elisabet L.; Sánchez, Olga; González, José M.; Pinhassi, Jarone; Massana, Ramon; Pernthaler, Jakob; Pedrós-Alió, Carlos (April 2007). "Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH". FEMS microbiology ecology. 60 (1): 98–112. doi:10.1111/j.1574-6941.2006.00276.x. ISSN 0168-6496. PMID 17250750.
  19. ^ Salter, Ian; Galand, Pierre E; Fagervold, Sonja K; Lebaron, Philippe; Obernosterer, Ingrid; Oliver, Matthew J; Suzuki, Marcelino T; Tricoire, Cyrielle (2015/02). "Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea". The ISME Journal. 9 (2): 347–360. doi:10.1038/ismej.2014.129. ISSN 1751-7370. {{cite journal}}: Check date values in: |date= (help)
  20. ^ Hugoni, Mylène; Taib, Najwa; Debroas, Didier; Domaizon, Isabelle; Dufournel, Isabelle Jouan; Bronner, Gisèle; Salter, Ian; Agogué, Hélène; Mary, Isabelle (2013-04-09). "Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters". Proceedings of the National Academy of Sciences. 110 (15): 6004–6009. doi:10.1073/pnas.1216863110. ISSN 0027-8424. PMID 23536290.