From Wikipedia, the free encyclopedia
Finished writing a draft article? Are you ready to request review of it by an experienced editor for possible inclusion in Wikipedia? Submit your draft for review!
V
[
r
]
=
e
−
(
ν
[
r
]
+
λ
[
r
]
)
ϵ
[
r
]
+
p
[
r
]
∗
[
(
ϵ
[
r
]
+
p
[
r
]
)
(
e
ν
[
r
]
+
λ
[
r
]
)
r
W
[
r
]
]
{\displaystyle V[r]={\frac {e^{-(\nu [r]+\lambda [r])}}{\epsilon [r]+p[r]}}*{\biggr [}(\epsilon [r]+p[r])(e^{\nu [r]+\lambda [r]})rW[r]{\biggr ]}}
the equations are:
r
¨
−
r
θ
˙
2
=
C
(
U
+
V
c
o
s
(
ω
t
)
)
∑
n
=
0
∞
n
(
4
n
+
1
)
[
∑
m
=
0
n
(
−
1
)
m
(
4
n
−
2
m
)
!
(
1
−
(
c
o
s
(
α
)
)
2
n
−
2
m
+
1
)
4
n
m
!
(
2
n
−
m
)
!
(
2
n
−
2
m
+
1
)
!
]
r
2
n
−
1
R
2
n
P
2
n
(
c
o
s
(
θ
)
)
{\displaystyle {\ddot {r}}-r{\dot {\theta }}^{2}=C(U+Vcos({\omega }t))\sum _{n=0}^{\infty }n(4n+1){\biggr [}\sum _{m=0}^{n}(-1)^{m}{\frac {(4n-2m)!(1-(cos(\alpha ))^{2n-2m+1})}{4^{n}m!(2n-m)!(2n-2m+1)!}}{\biggr ]}{\frac {r^{2n-1}}{R^{2n}}}P_{2n}(cos(\theta ))}
r
θ
¨
+
2
r
˙
θ
˙
=
C
(
U
+
V
c
o
s
(
ω
t
)
)
∑
n
=
0
∞
(
4
n
+
1
)
[
∑
m
=
0
n
(
−
1
)
m
(
4
n
−
2
m
)
!
(
1
−
(
c
o
s
(
α
)
)
2
n
−
2
m
+
1
)
4
n
m
!
(
2
n
−
m
)
!
(
2
n
−
2
m
+
1
)
!
]
r
2
n
−
1
R
2
n
d
d
θ
(
P
2
n
(
c
o
s
(
θ
)
)
)
{\displaystyle r{\ddot {\theta }}+2{\dot {r}}{\dot {\theta }}=C(U+Vcos({\omega }t))\sum _{n=0}^{\infty }(4n+1){\biggr [}\sum _{m=0}^{n}(-1)^{m}{\frac {(4n-2m)!(1-(cos(\alpha ))^{2n-2m+1})}{4^{n}m!(2n-m)!(2n-2m+1)!}}{\biggr ]}{\frac {r^{2n-1}}{R^{2n}}}{d \over d\theta }(P_{2n}(cos(\theta )))}
which with this assignment:
X
1
=
r
{\displaystyle X_{1}=r}
X
2
=
θ
{\displaystyle X_{2}=\theta }
X
3
=
r
˙
{\displaystyle X_{3}={\dot {r}}}
X
4
=
θ
˙
{\displaystyle X_{4}={\dot {\theta }}}
will become a simultaneous systems of ODEs:
X
1
˙
=
X
3
{\displaystyle {\dot {X_{1}}}=X_{3}}
X
2
˙
=
X
4
{\displaystyle {\dot {X_{2}}}=X_{4}}
X
3
˙
=
X
1
X
4
2
+
C
(
U
+
V
c
o
s
(
ω
t
)
)
∑
n
=
0
∞
n
(
4
n
+
1
)
[
∑
m
=
0
n
(
−
1
)
m
(
4
n
−
2
m
)
!
(
1
−
(
c
o
s
(
α
)
)
2
n
−
2
m
+
1
)
4
n
m
!
(
2
n
−
m
)
!
(
2
n
−
2
m
+
1
)
!
]
r
2
n
−
1
R
2
n
P
2
n
(
c
o
s
(
θ
)
)
{\displaystyle {\dot {X_{3}}}=X_{1}X_{4}^{2}+C(U+Vcos({\omega }t))\sum _{n=0}^{\infty }n(4n+1){\biggr [}\sum _{m=0}^{n}(-1)^{m}{\frac {(4n-2m)!(1-(cos(\alpha ))^{2n-2m+1})}{4^{n}m!(2n-m)!(2n-2m+1)!}}{\biggr ]}{\frac {r^{2n-1}}{R^{2n}}}P_{2n}(cos(\theta ))}
X
4
˙
=
−
2
X
3
X
4
X
1
+
C
(
U
+
V
c
o
s
(
ω
t
)
)
∑
n
=
0
∞
(
4
n
+
1
)
[
∑
m
=
0
n
(
−
1
)
m
(
4
n
−
2
m
)
!
(
1
−
(
c
o
s
(
α
)
)
2
n
−
2
m
+
1
)
4
n
m
!
(
2
n
−
m
)
!
(
2
n
−
2
m
+
1
)
!
]
r
2
n
−
1
R
2
n
d
d
θ
(
P
2
n
(
c
o
s
(
θ
)
)
)
X
1
{\displaystyle {\dot {X_{4}}}={\frac {-2X_{3}X_{4}}{X_{1}}}+{\frac {C(U+Vcos({\omega }t))\sum _{n=0}^{\infty }(4n+1){\biggr [}\sum _{m=0}^{n}(-1)^{m}{\frac {(4n-2m)!(1-(cos(\alpha ))^{2n-2m+1})}{4^{n}m!(2n-m)!(2n-2m+1)!}}{\biggr ]}{\frac {r^{2n-1}}{R^{2n}}}{d \over d\theta }(P_{2n}(cos(\theta )))}{X_{1}}}}