Jump to content

User:PDEguy/sandbox

From Wikipedia, the free encyclopedia

Quasiconvexity is a generalisation of convexity in the Calculus of Variations to characterise the integrand of a functional for the existence of minimizers. This means to find necessary and sufficient conditions for a functional for a sufficient regular domain with described boundary data g and the integrand , to be lower semi-continuous. By compactness arguments (Banach–Alaoglu theorem) the existence of minimizers follows from the direct method.[1] This concept was introduced by Morrey in 1952[2].

Definition

[edit]

A locally bounded Borel-measurable function is called quasiconvex if for all and all , where B(0,1) is the unit ball and is the Sobolev space of essiantially bounded functions with vanishing trace[3].

Properties of quasiconvex functions

[edit]
  • Quasiconvex functions are locally Lipschitz-continuous[5].
  • In the definition the space can be replaced by periodic Sobolev functions[6].

Relations to other notions of convexity

[edit]

Quasiconvexity is a generalisation of convexity, to see this let and with . The Riesz-Markov-Kakutani representation theorem states that the dual space of can be identified with the space of signed, finite Radon measures on it. We define a Radon measure by for . It can be verfied that is a probability measure and its barycenter is given If h is a convex function, then Jensens' Inequality gives This holds especially if V(x) is the derivative of by the generalised Stokes' Theorem[7].

The determinant is a quasiconvex function, which is not convex. The determinant is an counterexample to, since for it holds but for it is .

However this should not be confused with the notion of quasiconvexity in Game Theory.

In the vectorial case of the Calculus of Variations there are other notions of convexity. For a function holds[8]

These notions are all equivalent if . Already in 1952, Morrey conjectured that rank-1-convexity does not imply quasiconvexity[9]. This was a major unsolved problem in the Calculus of Variations, until Šverák gave an counterexample in 1993 for the case and .[10]. The case is still an open problem, known as Morrey's conjecture[11].

Relation to weak lower semi-continuity

[edit]

Under certain growth condition of the integrand, the sequential weakly lower semi-continuity (swlsc) of the functional is equivalent to the quasiconvexity of the integrand. Acerbi and Fusco proved the following theorem:

Theorem: If is measurable in v and continuous in A and it holds . Then the functional is swlsc if and only if f is quasiconvex. Here C is a positive constant and a(x) an integrable function[12].

Other authors use different growth conditions and different proof conditions[13] [14]. The first proof of it was due to Morrey in his paper, but he required additional assumptions[15].


References

[edit]
  1. ^ Rindler, Filip (2018). Calculus of Variations. Universitext. Springer International Publishing AG. p. 125. doi:10.1007/978-3-319-77637-8. ISBN 978-3-319-77636-1.
  2. ^ Morrey, Charles B. (1952). "Quasiconvexity and the Lower Semicontinuity of Multiple Integrals". Pacific Journal of Mathematics. 2 (1). Mathematical Sciences Publishers: 25–53. doi:10.2140/pjm.1952.2.25. Retrieved 2022-06-30.
  3. ^ Rindler, Filip (2018). Calculus of Variations. Universitext. Springer International Publishing AG. p. 106. doi:10.1007/978-3-319-77637-8. ISBN 978-3-319-77636-1.
  4. ^ Rindler, Filip (2018). Calculus of Variations. Universitext. Springer International Publishing AG. p. 108. doi:10.1007/978-3-319-77637-8. ISBN 978-3-319-77636-1.
  5. ^ Dacorogna, Bernard (2008). Direct Methods in the Calculus of Variations. Applied mathematical sciences (2nd ed.). Springer Science+Business Media, LLC. p. 159. doi:10.1007/978-0-387-55249-1. ISBN 978-0-387-35779-9.
  6. ^ Dacorogna, Bernard (2008). Direct Methods in the Calculus of Variations. Applied mathematical sciences (2nd ed.). Springer Science+Business Media, LLC. p. 173. doi:10.1007/978-0-387-55249-1. ISBN 978-0-387-35779-9.
  7. ^ Rindler, Filip (2018). Calculus of Variations. Universitext. Springer International Publishing AG. p. 107. doi:10.1007/978-3-319-77637-8. ISBN 978-3-319-77636-1.
  8. ^ Dacorogna, Bernard (2008). Direct Methods in the Calculus of Variations. Applied mathematical sciences (2nd ed.). Springer Science+Business Media, LLC. p. 159. doi:10.1007/978-0-387-55249-1. ISBN 978-0-387-35779-9.
  9. ^ Morrey, Charles B. (1952). "Quasiconvexity and the Lower Semicontinuity of Multiple Integrals". Pacific Journal of Mathematics. 2 (1). Mathematical Sciences Publishers: 25–53. doi:10.2140/pjm.1952.2.25. Retrieved 2022-06-30.
  10. ^ Šverák, Vladimir (1993). "Rank-one convexity does not imply quasiconvexity". Proceedings of the Royal Society of Edinburgh Section A: Mathematics. 120 (1–2). Cambridge University Press, Cambridge; RSE Scotland Foundation: 185–189. doi:10.1017/S0308210500015080. Retrieved 2022-06-30.
  11. ^ Voss; et al. (2022-01-17). "Numerical approaches for investigating quasiconvexity in the context of Morrey's conjecture". https://arxiv.org/abs/2201.06392. Retrieved 2022-06-30. {{cite web}}: Explicit use of et al. in: |author= (help); External link in |website= (help)
  12. ^ Acerbi, Emilio; Fusco, Nicola (1984). "Semicontinuity problems in the calculus of variations". Archive for Rational Mechanics and Analysis. 86 (1–2). Springer, Berlin/Heidelberg: 125–145. doi:10.1007/BF00275731. Retrieved 2022-06-30.
  13. ^ Rindler, Filip (2018). Calculus of Variations. Universitext. Springer International Publishing AG. p. 128. doi:10.1007/978-3-319-77637-8. ISBN 978-3-319-77636-1.
  14. ^ Dacorogna, Bernard (2008). Direct Methods in the Calculus of Variations. Applied mathematical sciences (2nd ed.). Springer Science+Business Media, LLC. p. 368. doi:10.1007/978-0-387-55249-1. ISBN 978-0-387-35779-9.
  15. ^ Morrey, Charles B. (1952). "Quasiconvexity and the Lower Semicontinuity of Multiple Integrals". Pacific Journal of Mathematics. 2 (1). Mathematical Sciences Publishers: 25–53. doi:10.2140/pjm.1952.2.25. Retrieved 2022-06-30.