Jump to content

User:Onemillionthtree/sandbox

From Wikipedia, the free encyclopedia

Current publications: (True)

[edit]

intra-searches

[edit]

Wikipedia:Researching with Wikipedia 01:14, 22 April 2025 (UTC)

Things=use: (True)

[edit]

Cite error: There are <ref> tags on this page without content in them (see the help page).

{{cite web}}: Empty citation (help)

{{cite journal}}: Empty citation (help)

{{cite book}}: Empty citation (help)

{{cite magazine}}: Empty citation (help)

{{cite magazine}}: Empty citation (help)

{{cite magazine}}: Empty citation (help)

(Thesis). {{cite thesis}}: Missing or empty |title= (help)

(Thesis). {{cite thesis}}: Missing or empty |title= (help)

(Thesis). {{cite thesis}}: Missing or empty |title= (help)

Cite error: There are <ref> tags on this page without content in them (see the help page).

==Notes==

~~ ~~

My code collection

[edit]

Thing v.1: use=future: (True)

[edit]

Things=use: Foren.lang. (True)

[edit]

ja

[edit]

リンク


Search research-Improvement-useful things (maybe True)

[edit]

https://www.thoughtco.com/key-copyediting-terms-1692372 (I was looking for a particular thing which there s a node energetically but no formal expression is known)

Actual temp.

[edit]

  • Source(I): https://www.space.com/coldest-place-in-the-universe David Crookes (www.space.com/author/david-crookes="Sorry! Page not found.") published October 29, 2021
  • Analysis(I): In the case of "I": ("-273.15" does = 0 kelvin) "-272°C"(IB) (α) = 1.1500K an alternative value provided for B "-458°F" ergo B=0.92778K. Iβ B=K:1.15/1.6
  • Source(III):https://www.astronomy.com/science/the-boomerang-nebula/ Stephen James O'Meara: "The International Astronomical Union named asteroid 3637 O’Meara in his honor...Steve has also been awarded with the Caroline Herschel Award for his greatest observing achievements, which include being to first person to visually recover Halley’s Comet in 1985 when it was at magnitude 19.6. O’Meara is the author of about a dozen books, including the Deep-Sky Companions series of deep-sky observing guides. " published: January 1, 2024: "What’s more, the nebula’s deep interior has a temperature of only 1 degree Celsius above absolute zero (nearly minus 460 degrees Fahrenheit), making it one of the coldest known natural environments in the universe."
  • Findings(III): 272.15=B1.15K
  • Source(V): https://www.forbes.com/sites/startswithabang/2016/11/16/colder-than-empty-space-how-the-boomerang-nebula-does-it/ is shown author-medium.com-"become a member to read this story" - same wording visible for cmbr sentence Forbes. Forbes: "Senior Contributor." https://www.forbes.com/sites/ethansiegel/ I am a Ph.D. astrophysicist, author, and science communicator, who professes physics and astronomy at various colleges. I have won numerous awards for science writing since 2008 for my blog: "you might think that 2.725 K is the coldest you can ever get in nature... And as a result of all of this, it's the coldest natural place in the known Universe, with some portions of the nebula coming in at just 0.5 K: half a degree above absolute zero."
  • Findings(V): B=0.5 K



Range of minimum–maximum actual–theoretical temperatures

[edit]
List of orders of magnitude for temperature
Factor Multiple Negative thermodynamic temperatures[a] Type
10−9
− nK Artificial (A)
10−12
−100 pK nuclear spin temperature of −750 pK using rhodium.[4] A
Absolute zero[5][6]
0 N/A
Positive temperatures
10−12
10s–100s pK
A
10−9
10–100 nK
A
10−6
1μK
10−3
1–100s mK
1
1 K
101 10 K
102 100 K

See detailed list below

103
1-10 kK


104 10-100s kK
106
1–100s MK
109
1–100s GK
1012
0.1–100s TK
1015
0.1-1 PK
1018
EK
1021
ZK
1024
1 YK
1027
1 RK
  • Everything 10−35 seconds after the Big Bang
1030
1 QK
1032
100 QK
1033
1000 QK
10290
10260 QK

Notes

[edit]
  1. ^ Such a temperature, while negative as a scalar value, correspond to thermodynamic states hotter than every positive temperature[1] – even infinite temperature[2]
  2. ^
    • requiring the excitation temperature (Tex) to be less than 2.8 K (Tbb).
    • This is because the antenna temperature measured through our “on source–off source” observations is an excess over Tbb and is equal to I(ON) - I(OFF)
    • with I(ON) 2/2k) [B(Tbb) e) + B(Tex)(1 - e)],
    • and I(OFF) 2/2k)B(Tbb),
    • where τ is the optical depth, and B is the Planck blackbody function.
    • Hence, if Tex < Tbb, and τ >> 1, then I(ON) - I(OFF) 2/2k) [B(Tex) - B(Tbb)] < 0.[20]
  3. ^ The concept: "boomerang" is a belonging/possession of native tribes of Australia.[21]

References

[edit]
  1. ^ a b Braun, S.; Ronzheimer, J. P.; Schreiber, M.; Hodgman, S. S.; Rom, T.; Bloch, I.; Schneider, U. (4 January 2013). "Negative Absolute Temperature for Motional Degrees of Freedom". Science. 339 (6115): 52–55. arXiv:1211.0545. Bibcode:2013Sci...339...52B. doi:10.1126/science.1227831. PMID 23288533 – via Zeeya Merali: doi.org/10.1038/nature.2013.12146.
  2. ^ "Negative Absolute Temperatures Does that mean that temperature is circular?". Quantum Optics Group. Ludwig-Maximilians Universität Munich. Retrieved 20 February 2025. How do you measure temperature?...we take images of our atoms with a CCD camera...We compare the distribution of our atoms with the theoretically expected distributions. The distribution that fits best gives us the temperature of the atoms.
  3. ^ "A temperature below absolute zero". www.mpg.de. Max-Planck-Gesellschaft. 4 January 2013. Archived from the original on 9 March 2025. Retrieved 18 February 2025.
  4. ^ Lounasmaa, Olli V.; Hakonen, Pertti; Nummila, Kaj; Vuorinen, Reko; Martikainen, Juha (2 February 1994). "Negative nanokelvin temperature in the nuclear spin systems of silver and rhodium metals". Physica B: Condensed Matter. 194-196 Part 1: 291–292. Bibcode:1994PhyB..194..291L. doi:10.1016/0921-4526(94)90475-8 – via Abraham & Penrose (November 25, 2016) www.macs.hw.ac.uk/~oliver/PREpaper.pdf.
  5. ^ a b Barton, Allan F.M. (1997). "5 Thermodynamic Matter". States of Matter. Bristol and Philadelphia: Institute of Physics Publishing. p. 110. ISBN 9780750304184. Retrieved 17 February 2025 – via Google Books.
  6. ^ a b Angelo Jnr., Joseph A. (April 2020). "Very Cold Matter". Extreme States of Matter. New York: Infobase. p. 112. ISBN 9781438195834. Retrieved 17 February 2025 – via Google Books.
  7. ^ Deppner, Christian; Herr, Waldemar; Cornelius, Merle; Stromberger, Peter; Sternke, Tammo; Grzeschik, Christoph; Grote, Alexander; Rudolph, Jan; Herrmann, Sven; Krutzik, Markus; Wenzlawski, André (2021-08-30). "Collective-Mode Enhanced Matter-Wave Optics". Physical Review Letters. 127 (10): 100401. Bibcode:2021PhRvL.127j0401D. doi:10.1103/PhysRevLett.127.100401. ISSN 0031-9007. PMID 34533345. S2CID 237396804.
  8. ^ a b De Marco, Luigi; Valtolina, Giacomo; Matsuda, Kyle; Tobias, William G.; Covey, Jacob P.; Ye, Jun (17 January 2019). "A degenerate Fermi gas of polar molecules". SCIENCE. 363 (6429): 853–856. doi:10.1126/science.aau7230. PMID 30655445.
  9. ^ Leanhardt, A. E.; Pasquini, T. A.; Saba, M.; Schirotzek, A.; Shin, Y.; Kielpinski, D.; Pritchard, D. E.; Ketterle, W. (12 September 2003). "Cooling Bose-Einstein Condensates Below 500 Picokelvin". Science. 301 (5639). MIT: 1513–1515. doi:10.1126/science.1088827. PMID 12970559 – via Isabella Dumé Physics World: web.archive.org/web/20120402094614/http://physicsworld.com/cws/article/news/18214.
  10. ^ Anderson, M. H.; Ensher, J. R.; Matthews, M. R.; Wieman, C. E.; Cornell, E. A. (14 July 1995). "Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor". SCIENCE. 269 (5221). Joint Institute for Laboratory Astrophysics (JILA): Abstract. doi:10.1126/science.269.5221.198 – via www.cibtech.org/J-PHYSICS-MATHEMATICAL-SCIENCES/PUBLICATIONS/2015/Vol-5-NO-3/01-JPMS-001-(SEP)-THOMAS-CRITICAL.pdf (INTRODUCTION) & iask.ai/?mode=question&q=what+was+the+first+Bose-Einstein+Condensation+made%2Fcreated (ai verified: bingweb.binghamton.edu/~suzuki/ModernPhysics/31_BEC_in_alkali_atoms.pdf).
  11. ^ Davis, K. B.; Mewes, M. -O.; Andrews, M. R.; van Druten, N. J.; Durfee, D. S.; Kurn, D. M.; Ketterle, W. (27 November 1995). "Bose-Einstein Condensation in a Gas of Sodium Atoms". Phys. Rev. Lett. 75 (3969). aps.org: 3969–3973. doi:10.1103/PhysRevLett.75.3969 – via Silke Ospelkaus-Schwarzer ediss.sub.uni-hamburg.de/bitstream/ediss/1637/1/silke_ospelkaus_dissertation.pdf p.1.
  12. ^ Ospelkaus-Schwarzer, Silke (21 December 2006). "Chapter 1 Introduction". Quantum Degenerate Fermi-Bose Mixtures of 40K and 87Rb in 3D Optical Lattices (PDF). Hamburg: uni-hamburg.de – via jila.colorado.edu/sites/default/files/2019-05/goldwin_thesis.pdf [JM Goldwin 2005 University of Colorado-x-Table 3.1/95: thesis director: Deborah S. Jin].
  13. ^ a b Enss, Christian; Hunklinger, Siegfried (2005). "Superfluid 3HE". Low-temperature physics. Berlin Heidelberg: Springer-Verlag. doi:10.1007/3-540-26619-4_4. ISBN 3-540-23164-1. Retrieved 1 April 2025. superfluid 3He was finally discovered in 1971. Osheroff, Richardson and Lee observed clear indications for two phase transitions in 3He at temperatures around 2mK" (sic) "in experiments using a Pomeranchuk cell
  14. ^ a b Soda, Toshio; Yamazaki, Koji (February 1974). "On the Superfluid Phases of Liquid 3He". Progress of Theoretical Physics. 51 (2): Abstract. doi:10.1143/PTP.51.327 – via iask.ai/?mode=question&options[detail_level]=detailed&q=Osheroff+DD%2C+Gully+WJ%2C+Richardson+RC%2C+Lee+DM+1972.+Phys.+Rev.+Lett.+29%3A920 using W.P. Halperin Superfluid 3He in Aerogel Annual Review of Condensed Matter Physics Volume 10, 2019 search: iask.ai: "2.  Osheroff DD, Gully WJ, Richardson RC, Lee DM 1972. Phys. Rev. Lett. 29:920".
  15. ^ a b Lounasmaa, O.V. (October 1974). "3HE-Two Superfluid Phases" (PDF). europhysics news BULLETIN OF THE EUROPEAN PHYSICAL SOCIETY. 5 (10). Helsinki University of Technology.
  16. ^ Osheroff, D. D.; Richardson, R. C.; Lee, D. M. (3 April 1972). "Evidence for a New Phase of Solid He3". Phys. Rev. Lett. 28 (885). Cornell University. doi:10.1103/PhysRevLett.28.885 – via Enss & Hunklinger. indicate the existence of a new phase in solid He3 below 2.7 mK of a fundamentally different nature
  17. ^ Jin, D.S.; Regal, C.C. (18 April 2008). "Fermi Gas Experiments". In Inguscio, M.; Ketterle, W.; Salomon, C. (eds.). Proceedings of the International School of Physics "Enrico Fermi" COURSE CLXIV Ultra-cold Fermi Gases. AMSTERDAM OXFORD TOKYO WASHINGTON DC: IOS Press & Società Italiana di Fisica. p. 3. ISBN 1607503182. Retrieved 1 April 2025. [13]-p.47:OSHEROFF, RICHARDSON, LEE (1972)
  18. ^ Ouellet, Jonathan (14 October 2014). "The Coldest Cubic Meter in the Known Universe". arXiv:1410.1560.
  19. ^ Allen and Misener; Kapitza (1938). Regal, C.A.; Jin, D.S. (2007). "Introduction". Experimental Realization of the BCS-BEC Crossover with a Fermi Gas of Atoms. Advances In Atomic, Molecular, and Optical Physics. Vol. 54. JILA: ELSEVIER. pp. 1–79. doi:10.1016/S1049-250X(06)54001-7. ISBN 978-0-12-003854-1.
  20. ^ a b Sahai, Raghvendra; Nyman, Lars-Åke (1997). "The Boomerang Nebula: The Coolest Region of the Universe?". The Astrophysical Journal. 487 (2): L155 – L159. Bibcode:1997ApJ...487L.155S. doi:10.1086/310897. hdl:2014/22450. L156: We have measured a 9 mK upper limit (3 σ) on continuum emission at 89.2 and 145.6 GHz toward the Boomerang Nebula, which is much smaller than the negative temperatures seen in the CO and 13CO J 1–0 spectra, so these must result from absorption of the microwave background, requiring the excitation temperature (Tex) to be less than 2.8 K (Tbb). 3. A TWO–SHELL MODEL In shell 2 (R1,o < r < R2), Tkin < 2.8 K
  21. ^ "Defining Moments in Australian History Earliest evidence of the boomerang in Australia". www.nma.gov.au. Lawson Crescent Acton Peninsula, Canberra: National Museum Australia. Retrieved 29 March 2025. Aboriginal and Torres Strait Islander people should be aware this website contains images, voices and names of people who have died.
  22. ^ Sahai, R.; Vlemmings, W. H. T.; Huggins, P.J.; Nyman, L.-Å.; Gonidakis, I. (10 November 2013). "ALMA OBSERVATIONS OF THE COLDEST PLACE IN THE UNIVERSE: THE BOOMERANG NEBULA". The Astrophysical Journal. 777 (92): 1. arXiv:1308.4360. doi:10.1088/0004-637X/777/2/92.
  23. ^ Savvatimskii, Aleksandr I (2003). "Melting point of graphite and liquid carbon (Concerning the paper 'Experimental investigation of the thermal properties of carbon at high temperatures and moderate pressures' by E. I. Asinovskii, A. V. Kirillin, and A. V. Kostanovskii)". Physics-Uspekhi. 46 (12): 1295–1303. Bibcode:2003PhyU...46.1295S. doi:10.1070/PU2003v046n12ABEH001699. S2CID 250746507.
  24. ^ Yang, C. C.; Li, S. (2008). "Size-Dependent Temperature-Pressure Phase Diagram of Carbon". Journal of Physical Chemistry C. 112 (5): 1423–1426. doi:10.1021/jp076049+.
  25. ^ David R. Williams (9 May 2024). "Solar Atmosphere". nssdc.gsfc.nasa.gov. NSSDCA, Mail Code 690.1 NASA Goddard Space Flight Center Greenbelt, MD 20771. Archived from the original on 6 Aug 2024. Retrieved 1 April 2025.
  26. ^ Mullen, P. D.; Woods, C. N. (8 December 2015). "Determining the Suns Surface Temperature With iPhone" (PDF). Department of Physics and Astronomy, University of Georgia, Athens, Georgia.
  27. ^ Abdelsalam, Tarek I.; Tian, Zhao; Robinson, Adam (1 May 2023). "Directly irradiated liquid metal film in an ultra-high temperature solar cavity receiver. Part 1: Concepts and a quasi-steady-state analysis". Solar Energy. 255: 2.1. Solar concentration. doi:10.1016/j.solener.2023.03.047.
  28. ^ a b Morozov, A N (2017). "Скрипкин Алексей Владимирович Calculation of the Intensity of Physical Time Fluctuations Using the Standard Solar Model and its Comparison with the Results of Experimental Measurements". IOP Conf. Series: Journal of Physics: Conf. Series (9th Russian National Conference on Irreversible Processes in Nature and Technics (9RNC-IPNT) 25–27 January 2017). 918 (012008). Bauman Moscow State Technical University: IOP Publishing Ltd: 3. Calculation of the intensity of physical time fluctuations during the production of entropy by irreversible processes (16): p.4 ("5830") 6. Calculation of the intensity of physical time fluctuations due to the Earth's thermal radiation (28): p.8. doi:10.1088/1742-6596/918/1/012008.
  29. ^ Chitta, L. P.; Smitha, H. N.; Solanki, S. K. (30 April 2020). "Solar Photosphere". Oxford Research Encyclopedia of Physics. Max Planck Institute for Solar System Research: Oxford University Press and the American Institute of Physics. Archived from the original on 1 April 2025.
  30. ^ Correa, A. A.; Bonev, S. A.; Galli, G. (2006). "Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory". Proceedings of the National Academy of Sciences. 103 (5): 1204–1208. Bibcode:2006PNAS..103.1204C. doi:10.1073/pnas.0510489103. PMC 1345714. PMID 16432191.
  31. ^ Wang, Xiaofei; Scandolo, Sandro; Car, Roberto (2005). "Carbon Phase Diagram from Ab Initio Molecular Dynamics". Physical Review Letters. 95 (18): 185701. Bibcode:2005PhRvL..95r5701W. doi:10.1103/PhysRevLett.95.185701. PMID 16383918. S2CID 15373344.
  32. ^ Gerald I. Kerley and Lalit Chhabildas, "Multicomponent-Multiphase Equation of State for Carbon", Sandia National Laboratories (2001)
  33. ^ Glosli, James; Ree, Francis (1999). "Liquid-Liquid Phase Transformation in Carbon". Physical Review Letters. 82 (23): 4659–4662. Bibcode:1999PhRvL..82.4659G. doi:10.1103/PhysRevLett.82.4659.
  34. ^ Man Chai Chang; Ryong, Ryoo; Mu Shik Jhon (1985). "Thermodynamic properties of liquid carbon". Carbon. 23 (5): 481–485. Bibcode:1985Carbo..23..481M. doi:10.1016/0008-6223(85)90083-1.
  35. ^ Bestenlehner, Joachim M.; Crowther, Paul A.; Caballero-Nieves, Saida M.; Schneider, Fabian R. N.; Simón-Díaz, Sergio; Brands, Sarah A.; De Koter, Alex; Gräfener, Götz; Herrero, Artemio; Langer, Norbert; Lennon, Daniel J.; Maíz Apellániz, Jesus; Puls, Joachim; Vink, Jorick S. (2020). "The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136". Monthly Notices of the Royal Astronomical Society. 499 (2): 1918. arXiv:2009.05136. Bibcode:2020MNRAS.499.1918B. doi:10.1093/mnras/staa2801.
  36. ^ Massey, Philip; Bresolin, Fabio; Kudritzki, Rolf P.; Puls, Joachim; Pauldrach, A. W. A. (2004). "The Physical Properties and Effective Temperature Scale of O-Type Stars as a Function of Metallicity. I. A Sample of 20 Stars in the Magellanic Clouds". The Astrophysical Journal. 608 (2): 1001–1027. arXiv:astro-ph/0402633. Bibcode:2004ApJ...608.1001M. doi:10.1086/420766. S2CID 119373878.
  37. ^ "Highest man-made temperature". Guinness World Records. Jim Pattison Group. Retrieved 16 August 2015.



other peoples Drafts

[edit]

Draft:Routine Outcome Measurement in Psychotherapy

https://en.wikipedia.org/wiki/Category:AfC_pending_submissions_by_age - Wikipedia:Articles for creation:
Draft:White Beaches
Draft:Anticipatory action
Draft:Staged tree
Draft:Oceanic Deserts
Draft:Katakhanas
Draft:Sanctuary of Pan on the Neda River
Draft:Sister Handmaids of Charity of St. Vincent de Paul
Wikipedia:WikiProject Articles for creation/Reviewing instructions 18:42, 18 April 2025 (UTC) +: Peer review

List of toxins and pollutants in households

[edit]

In 2015, German consumer watchdog Stiftung Warentest analyzed cosmetics containing mineral oils, finding significant concentrations of MOAH and polyaromatics in products containing mineral oils.[1] Vaseline products contained the most MOAH of all tested cosmetics (up to 9%).[1] Based on the 2015 results, Stiftung Warentest warned consumers not to use Vaseline or any product that is based on mineral oils for lip care.[1]

A 2013 academic study of fragranced laundry products found "more than 25 VOCs emitted from dryer vents, with the highest concentrations of acetaldehyde, acetone, and ethanol. Seven of these VOCs are classified as hazardous air pollutants (HAPs) and two as carcinogenic HAPs (acetaldehyde and benzene)".[2]

  1. ^ a b c "Critical substances in creams, lip care products and Vaseline (translated from German)". Stiftung Warentest. 26 May 2015. Retrieved 25 May 2023.
  2. ^ Anne C. Steinemann, "Chemical Emissions from Residential Dryer Vents During Use of Fragranced Laundry Products", Air Quality, Atmosphere and Health, March 2013, Vol. 6, Issue 1, pp. 151–156.