Jump to content

User:Lavishhill/sandbox

From Wikipedia, the free encyclopedia


In metric geometry, a geodesic bicombing distinguishes a class of geodesics of a metric space.

Definition

[edit]

Let be a metric space. A map is a geodesic bicombing if for all points the map is a unit speed metric geodesic from to , that is, , and for all real numbers .[1]

Different classes of geodesic bicombings

[edit]

A geodesic bicombing is

  • conical if for all and .
  • convex if the function is a convex function on for all .
  • consistent if whenever and .
  • reversible if for all and .

Examples

[edit]

Examples of metric spaces with a conical geodesic bicombing include

Properties

[edit]
  • Every consistent conical geodesic bicombing is convex.
  • Every proper metric space with a conical geodesic bicombing admits a convex geodesic bicombing.[1]
  • Every complete metric space with a conical geodesic bicombing admits a reversible conical geodesic bicombing.[2]

References

[edit]
  1. ^ a b Descombes, Dominic; Lang, Urs (2015). "Convex geodesic bicombings and hyperbolicity". Geometriae Dedicata. 177 (1): 367–384. doi:10.1007/s10711-014-9994-y. ISSN 0046-5755.
  2. ^ Basso, Giuliano; Miesch, Benjamin (2019). "Conical geodesic bicombings on subsets of normed vector spaces". Advances in Geometry. 19 (2): 151–164. doi:10.1515/advgeom-2018-0008. ISSN 1615-7168.