User:Lavishhill/sandbox
Appearance
In metric geometry, a geodesic bicombing distinguishes a class of geodesics of a metric space.
Definition
[edit]Let be a metric space. A map is a geodesic bicombing if for all points the map is a unit speed metric geodesic from to , that is, , and for all real numbers .[1]
Different classes of geodesic bicombings
[edit]A geodesic bicombing is
- conical if for all and .
- convex if the function is a convex function on for all .
- consistent if whenever and .
- reversible if for all and .
Examples
[edit]Examples of metric spaces with a conical geodesic bicombing include
- Banach spaces
- CAT(0) spaces
- injective metric spaces
- any ultralimit or 1-Lipschitz retraction of the above
Properties
[edit]- Every consistent conical geodesic bicombing is convex.
- Every proper metric space with a conical geodesic bicombing admits a convex geodesic bicombing.[1]
- Every complete metric space with a conical geodesic bicombing admits a reversible conical geodesic bicombing.[2]
References
[edit]- ^ a b Descombes, Dominic; Lang, Urs (2015). "Convex geodesic bicombings and hyperbolicity". Geometriae Dedicata. 177 (1): 367–384. doi:10.1007/s10711-014-9994-y. ISSN 0046-5755.
- ^ Basso, Giuliano; Miesch, Benjamin (2019). "Conical geodesic bicombings on subsets of normed vector spaces". Advances in Geometry. 19 (2): 151–164. doi:10.1515/advgeom-2018-0008. ISSN 1615-7168.