Jump to content

User:Gregory0925/sandbox

From Wikipedia, the free encyclopedia

A study done by Franssen, Vandierendonck and Van Hiel [1] which addressed the question, to what extent is phonological working memory involved in time estimation processes. Their study used irrelevant speech and articulatory suppression to test whether time estimation is affected during a task condition or phonological load. The results showed that articulatory suppression had impaired time estimation. The results from this study tell us the effects of articulatory suppression and its involvement in the phonological loop.

Hanley and Shah[2] looked at the role of irrelevant sound effect under articulatory suppression. During this experiment, participants wore stereo headphones when being tested. During the testing, participants heard an experimental list of items through the right headphone spoken by a female voice. Participants were instructed to repeat the word “the” at a rate of approximately two repetitions per second. There was a retention interval of 10 seconds between the final item and the recall of target items. Irrelevant sound took place when a male voice was spoken in the left headphone throughout the retention interval, right before the recall of items. The results from this study showed that there was a significant effect of irrelevant sound under articulatory suppression when the list items were followed by an auditory tone, but the effect was abolished when followed by a spoken suffix.

Articulatory suppression in the real world
[edit]

Task Switching

[edit]

In our every day-to-day life, articulatory suppression can affect our ability to switch between tasks. A study by Liefooghe, Vandierendonck, Muyllaert, Verbruggen and Vanneste [3] looked at the role of articulatory suppression can have on task switching. During their study, they conducted three experiments. In the first experiment, participants were asked to sort cards and were instructed either to perform the task silently or to repeat the word “de”. The results indicated that articulatory suppression affected how quick participants were to switching between the sorting tasks. The reaction time increased for participants who were under articulatory suppression compared to those who were not. The remaining two experiments also received results indicating articulatory suppression had an effect on task switching.

Results from Saeki and Saito’s[4] study concluded the effect of articulatory suppression on mixing cost during task switching but not on the actual switch cost. Their study tested participants in their verbal representation in sequential task decisions. The results indicated the use of verbal representation is effective in sequential task decision, which could be affected by articulatory suppression. Saeki, Saito and Kawaguchi [5] tested the effects of three concurrent task conditions on task switching (control, articulatory suppression, and tapping). The results obtained from their study concluded that articulatory suppression had a greater effect compared to the control and tapping conditions.

From the current studies, one can see that articulatory suppression does affect the ability and reaction time in task switching conditions. Wallace, Silvers, Martin, & Kenworthy [6] conducted experiments to see if individuals with autism use inner speech in task completion. The results from this study also provided information on the effect of articulatory suppression on task switching and completion. Further studies can look at the effect of articulatory suppression on certain professions and the correlations between their experience in task switching and the effect of articulatory suppression.

False Memories

[edit]

A study by Macé and Caza[7] looked at the role of articulatory suppression on immediate false recognition. During their first experiment, they created two groups of participants randomly. Participants in both groups were asked to listen to a list of words through headphones; and were instructed to point to “yes” or “no” during the second list in whether they recalled that word from the first list. Participants in the articulatory suppression group were instructed to count 1 to 10 during both presentations of the lists and until completion of responding to the second list. Results from this study indicated, the effects of articulatory suppression increased false recognition of mismatching words on the second list.

A current study done by Van Damme, Menten and d’Ydewalle[8] looked at the effects of articulatory suppression on explicit false memory. The study consisted of an experiment, which looked at the effects on explicit memory compared to implicit and veridical memory. The results of their study showed that articulatory suppression, during encoding information, eliminated implicit false memory and heightened explicit false memory.

Results from both of these studies, indicate that articulatory suppression has an effect on how we retain information and in increasing our false recognition of memories. Further studies can look at how this effect can contribute to eyewitness testimonies and in recall of events.

Effects on working memory

[edit]

A study by Hayes and Chenoweth[9] looks at the role of articulatory suppression in working memory. The articulatory suppression condition group asked participants to repeat the word “tap” aloud to a metronome while they transcribed text. The control group had to tap their foot to the metronome as they transcribed the text. The results of the study indicated, that participants who were under articulatory suppression condition had a significant reduction in typing rate and significant increase in the number of uncorrected errors. In summary, this study shows how articulatory suppression interfered with verbal working memory.

Working Memory works with both phonological loop and the visuospatial sketchpad, in the study performed by Jalbert and Saint-Aubin[10] . They looked at the effects of articulatory suppression on visual similarity recall for where and when. Their experiment consisted of participants placing a serial, of colored squares, into their appropriate locations as presented before. During the experiment, participants who experienced articulatory suppression were hindered by similarity in recalling the location of the colored squares.

Information from both of these studies indicated, that articulatory suppression has an effect on working memory in performing tasks. In the first study, the effects of articulatory suppression took place as participants transcribe text, which included using their working memory. In the second experiment, participants were asked to use their visuospatial sketchpad to recall the location of colored squares, but articulatory suppression took a great deal of their working memory in performing these tasks, which hindered participants.


References

[edit]
  1. ^ Franssen, Vicky (2006). "Duration estimation and the phonological loop: Articulatory suppression and irrelevant sounds". Psychological Research/Psychologische Forschung. 70 (4): 304–316. doi:10.1007/s00426-005-0217-x. PMID 16001277.
  2. ^ Hanley, J. Richard; Shah, Nikita (2012). "The irrelevant sound effect under articulatory suppression is a suffix effect even with five-item lists". Memory. 20 (5): 415–419. doi:10.1080/09658211.2012.670249. PMID 22497740.{{cite journal}}: CS1 maint: date and year (link)
  3. ^ Baptist, Liefooghe (2005). "The phonological loop in task alternation and task repetition". Memory. 13 (5): 550–560. doi:10.1080/09658210444000250. PMID 16020382. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  4. ^ Saeki, Erina; Saito, Satoru (2009). "Verbal representation in task order control: An examination with transition and task cues in random task switching". Memory & Cognition. 37 (7): 1040–1050. doi:10.3758/MC.37.7.1040. PMID 19744942.{{cite journal}}: CS1 maint: date and year (link)
  5. ^ Saeki, Erina (2006). "Effects of response-stimulus interval manipulation and articulatory suppression on task switching". Memory. 14 (8): 965–976. doi:10.1080/09658210601008973. PMID 17077031. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  6. ^ Wallace, Gregory (2009). "Brief report: Further evidence for inner speech deficits in autism spectrum disorders". Journal of Autism and Developmental Disorders. 39 (12): 1735–1739. doi:10.1007/s10803-009-0802-8. PMID 19565331. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  7. ^ Macé, A. (2011). "Verbal representation in task order control: An examination with transition and task cues in random task switching". Memory & Cognition. 19 (8): 891–900. doi:10.1080/09658211.2011.613844. PMID 22032514. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  8. ^ Van Damme, Ilse (2010). "The effect of articulatory suppression on implicit and explicit false memory in the DRM paradigm". Memory. 18 (8): 822–830. doi:10.1080/09658211.2010.509733. PMID 20924945. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  9. ^ Hayes, John R.; Chenoweth, N. Ann (2006). "Is Working Memory Involved in the Transcribing and Editing of Texts?". Written Communication. 23 (2): 135–149. doi:10.1177/0741088306286283.{{cite journal}}: CS1 maint: date and year (link)
  10. ^ Jalbert, Annie (2008). "Visual similarity in short-term recall for where and when". The Quarterly Journal of Experimental Psychology. 61 (3): 353–360. doi:10.1080/17470210701634537. PMID 17943647. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)