User:Djoseph0/be bold
Appearance
Being bold is important on Wikipedia, cash money!
Families of sets over | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Is necessarily true of or, is closed under: |
Directed by |
F.I.P. | ||||||||
π-system | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Semiring | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Never |
Semialgebra (Semifield) | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Never |
Monotone class | ![]() |
![]() |
![]() |
![]() |
![]() |
only if | only if | ![]() |
![]() |
![]() |
𝜆-system (Dynkin System) | ![]() |
![]() |
![]() |
only if |
![]() |
![]() |
only if or they are disjoint |
![]() |
![]() |
Never |
Ring (Order theory) | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Ring (Measure theory) | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Never |
δ-Ring | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Never |
𝜎-Ring | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Never |
Algebra (Field) | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Never |
𝜎-Algebra (𝜎-Field) | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Never |
Dual ideal | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Filter | ![]() |
![]() |
![]() |
Never | Never | ![]() |
![]() |
![]() |
![]() | |
Prefilter (Filter base) | ![]() |
![]() |
![]() |
Never | Never | ![]() |
![]() |
![]() |
![]() | |
Filter subbase | ![]() |
![]() |
![]() |
Never | Never | ![]() |
![]() |
![]() |
![]() | |
Open Topology | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() (even arbitrary ) |
![]() |
![]() |
Never |
Closed Topology | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() (even arbitrary ) |
![]() |
![]() |
![]() |
Never |
Is necessarily true of or, is closed under: |
directed downward |
finite intersections |
finite unions |
relative complements |
complements in |
countable intersections |
countable unions |
contains | contains | Finite Intersection Property |
Additionally, a semiring is a π-system where every complement is equal to a finite disjoint union of sets in |