1.3 4 × 10 − 3 = 325 Ω {\displaystyle {\frac {1.3}{4\times 10^{-3}}}=325\Omega }
15 8.4 × 10 − 3 ≈ 1786 Ω 1786 − 330 = 1456 Ω ≈ 1.5 k Ω {\displaystyle {\begin{aligned}{\frac {15}{8.4\times 10^{-3}}}&\approx 1786\Omega \\1786-330&=1456\Omega \approx 1.5{\text{k}}\Omega \end{aligned}}}
τ = 2 π f c = 1 τ R C Hz C = 10 nF R = 1 k Ω μ = R C = ( 10 × 10 − 9 ) × ( 1 × 10 3 ) = 10 × 10 − 6 f c = 1 τ μ = 15915.45709 (to 5 decimal places) ≈ 15915 Hz {\displaystyle {\begin{aligned}\tau &=2\pi \\f_{c}&={\frac {1}{\tau RC}}{\text{Hz}}\\C&=10{\text{nF}}\\R&=1{\text{k}}\Omega \\\mu &=RC\\&=\left(10\times 10^{-9}\right)\times \left(1\times 10^{3}\right)\\&=10\times 10^{-6}\\f_{c}&={\frac {1}{\tau \mu }}\\&=15915.45709{\text{ (to 5 decimal places)}}\\&\approx 15915{\text{Hz}}\end{aligned}}}
τ = 2 π f c = 1 τ R C Hz C = 10 nF R = 10 k Ω μ = R C = ( 10 × 10 − 9 ) × ( 10 × 10 3 ) = 10 × 10 − 4 f c = 1 τ μ = 1591.54571 (to 5 decimal places) ≈ 1592 Hz {\displaystyle {\begin{aligned}\tau &=2\pi \\f_{c}&={\frac {1}{\tau RC}}{\text{Hz}}\\C&=10{\text{nF}}\\R&=10{\text{k}}\Omega \\\mu &=RC\\&=\left(10\times 10^{-9}\right)\times \left(10\times 10^{3}\right)\\&=10\times 10^{-4}\\f_{c}&={\frac {1}{\tau \mu }}\\&=1591.54571{\text{ (to 5 decimal places)}}\\&\approx 1592{\text{Hz}}\end{aligned}}}
V 1 = 4.98 V 2 = 2.60 {\displaystyle {\begin{aligned}V_{1}&=4.98\\V_{2}&=2.60\end{aligned}}}
V 1 = 4.96 V 2 = 4.30 {\displaystyle {\begin{aligned}V_{1}&=4.96\\V_{2}&=4.30\end{aligned}}}
V in = 105 mV V out = 524 mV gain = V out V in ≈ 5 {\displaystyle {\begin{aligned}V_{\text{in}}&=105{\text{mV}}\\V_{\text{out}}&=524{\text{mV}}\\{\text{gain}}&={\frac {V_{\text{out}}}{V_{\text{in}}}}\approx 5\end{aligned}}}
V d s = 7 V V g s = 1.3 V gain = V d s V g s ≈ 5.38 {\displaystyle {\begin{aligned}V_{ds}&=7{\text{V}}\\V_{gs}&=1.3{\text{V}}\\{\text{gain}}&={\frac {V_{ds}}{V_{gs}}}\approx 5.38\end{aligned}}}