Jump to content

User:Binary198/Table of fundamental sequences

From Wikipedia, the free encyclopedia

A fundamental sequence for a limit ordinal is a sequence of ordinals approaching the limit ordinal from below. This article lists (most) of them.

Table

[edit]
Table
Ordinal S[0] S[n]
ω 0 n
ω2 0 ωn
ωα+1 0 ωαn
ωα for limit α ωα[0] ωα[n]
ωα + ωβ + ... + ωx + ωm+1 for α ≥ β ≥ ... ≥ x ≥ m + 1 ωα + ωβ + ... + ωx ωα + ωβ + ... + ωmn
δβγ + δεζ ... + δxy for limit δ δβγ + δεζ ... + δxy(y-1) + δx-1δ[0] δβγ + δεζ ... + δxy(y-1) + δx-1δ[n]
δβγ + δεζ ... + δxy for limit y δβγ + δεζ ... + (δxy)[0] δβγ + δεζ ... + (δxy)[n]
δβγ + δεζ ... + δxy for limit x δβγ + δεζ ... + δx(y-1) + δx[0] δβγ + δεζ ... + δx(y-1) + δx[n]
ψν(β+1) in Buchholz's psi 0 ψν(β)n
ε0 0
εα+1 εα + 1
εα for limit α < εα εα[0] εα[n]
ψ(α+1) in Madore's psi 1 ψ(α) ↑↑ n in Knuth's up arrow notation
ψ(α) in for limit α (with countable cofinality) ψ(α[0]) ψ(α[n])
ψ(α) in for limit α (with uncountable cofinality) See ordinal collapsing function See ordinal collapsing function
φ(α+1, 0) 0 φ(α, φ(α+1, 0)[n-1])
φ(α+1, β+1) φ(α+1, β) + 1 φ(α, φ(α+1, β+1)[n-1])
φ(α, β) for limit β < φ(α, β) φ(α, β[0]) φ(α, β[n])
φ(α, 0) for limit α < φ(α, 0) φ(α[0], 0) φ(α[n], 0)
φ(α, β+1) for limit α φ(α[0], φ(α, β) + 1) φ(α[n], φ(α, β) + 1)
Γ0 0 φ(Γ0[n-1], 0)
Γα+1 Γα + 1 φ(Γα+1[n-1], 0)
Γα for limit α Γα[0] Γα[n]

Examples

[edit]
  • ω: 0, 1, 2, ...
  • ω2: 0, ω, ω2, ...
  • ω3: 0, ω2, ω22, ...
  • ωω: 1, ω, ω2, ...
  • ω3 + ω3 + ω2 + ω: ω3 + ω2 + ω2, ω3 + ω2 + ω2 + 1, ω3 + ω2 + ω2 + 2, ...
  • ε0: 0, 1, ω, ...
  • ε1: ε0 + 1, , , ...
  • εω: ε0, ε1, ε2, ...
  • ζ0: 0, ε0, , ...
  • ζ1: ζ0 + 1, , , ...
  • ζω: ζ0, ζ1, ζ2, ...
  • φ(ω, 0): 1, ε0, ζ0, ...
  • φ(ω, 1): , , , ...
  • Γ0: 0, 1, ε0, ...
  • Γ1: Γ0 + 1, φ(Γ0 + 1, 0), φ(φ(Γ0 + 1, 0), 0), ...
  • Γω: Γ0, Γ1, Γ2, ...
  • Ackermann ordinal: ε0, φ(ε0, 0, 0), φ(φ(1, 0, ε0), 0, 0), ...
  • Small Veblen ordinal: ε1, φ(1, 0, 0, 0), , ...
    • This is the "canonical sequence". One could create a non-canonical, yet more intuitive sequence: ζ0, Γ0, φ(1, 0, 0, 0), ...
  • Large Veblen ordinal: ε0, , , ...
  • Bachmann-Howard ordinal: ζ0, Γ0, LVO, ...
  • Buchholz's ordinal: ε1, ζ0, BHO, ...