User:Binary198/Table of fundamental sequences
Appearance
A fundamental sequence for a limit ordinal is a sequence of ordinals approaching the limit ordinal from below. This article lists (most) of them.
Table
[edit]Ordinal | S[0] | S[n] |
---|---|---|
ω | 0 | n |
ω2 | 0 | ωn |
ωα+1 | 0 | ωαn |
ωα for limit α | ωα[0] | ωα[n] |
ωα + ωβ + ... + ωx + ωm+1 for α ≥ β ≥ ... ≥ x ≥ m + 1 | ωα + ωβ + ... + ωx | ωα + ωβ + ... + ωmn |
δβγ + δεζ ... + δxy for limit δ | δβγ + δεζ ... + δxy(y-1) + δx-1δ[0] | δβγ + δεζ ... + δxy(y-1) + δx-1δ[n] |
δβγ + δεζ ... + δxy for limit y | δβγ + δεζ ... + (δxy)[0] | δβγ + δεζ ... + (δxy)[n] |
δβγ + δεζ ... + δxy for limit x | δβγ + δεζ ... + δx(y-1) + δx[0] | δβγ + δεζ ... + δx(y-1) + δx[n] |
ψν(β+1) in Buchholz's psi | 0 | ψν(β)n |
ε0 | 0 | |
εα+1 | εα + 1 | |
εα for limit α < εα | εα[0] | εα[n] |
ψ(α+1) in Madore's psi | 1 | ψ(α) ↑↑ n in Knuth's up arrow notation |
ψ(α) in for limit α (with countable cofinality) | ψ(α[0]) | ψ(α[n]) |
ψ(α) in for limit α (with uncountable cofinality) | See ordinal collapsing function | See ordinal collapsing function |
φ(α+1, 0) | 0 | φ(α, φ(α+1, 0)[n-1]) |
φ(α+1, β+1) | φ(α+1, β) + 1 | φ(α, φ(α+1, β+1)[n-1]) |
φ(α, β) for limit β < φ(α, β) | φ(α, β[0]) | φ(α, β[n]) |
φ(α, 0) for limit α < φ(α, 0) | φ(α[0], 0) | φ(α[n], 0) |
φ(α, β+1) for limit α | φ(α[0], φ(α, β) + 1) | φ(α[n], φ(α, β) + 1) |
Γ0 | 0 | φ(Γ0[n-1], 0) |
Γα+1 | Γα + 1 | φ(Γα+1[n-1], 0) |
Γα for limit α | Γα[0] | Γα[n] |
Examples
[edit]- ω: 0, 1, 2, ...
- ω2: 0, ω, ω2, ...
- ω3: 0, ω2, ω22, ...
- ωω: 1, ω, ω2, ...
- ω3 + ω3 + ω2 + ω: ω3 + ω2 + ω2, ω3 + ω2 + ω2 + 1, ω3 + ω2 + ω2 + 2, ...
- ε0: 0, 1, ω, ...
- ε1: ε0 + 1, , , ...
- εω: ε0, ε1, ε2, ...
- ζ0: 0, ε0, , ...
- ζ1: ζ0 + 1, , , ...
- ζω: ζ0, ζ1, ζ2, ...
- φ(ω, 0): 1, ε0, ζ0, ...
- φ(ω, 1): , , , ...
- Γ0: 0, 1, ε0, ...
- Γ1: Γ0 + 1, φ(Γ0 + 1, 0), φ(φ(Γ0 + 1, 0), 0), ...
- Γω: Γ0, Γ1, Γ2, ...
- Ackermann ordinal: ε0, φ(ε0, 0, 0), φ(φ(1, 0, ε0), 0, 0), ...
- Small Veblen ordinal: ε1, φ(1, 0, 0, 0), , ...
- This is the "canonical sequence". One could create a non-canonical, yet more intuitive sequence: ζ0, Γ0, φ(1, 0, 0, 0), ...
- Large Veblen ordinal: ε0, , , ...
- Bachmann-Howard ordinal: ζ0, Γ0, LVO, ...
- Buchholz's ordinal: ε1, ζ0, BHO, ...