User:Binary198/Comparison between ordinal notations
An ordinal notation is a partial function from a finite alphabet to a countable set of ordinals. A Gödel numbering is a function from the set of well-formed formulae to the natural numbers. There are many such schemes of ordinal notations, including schemes by Wilhelm Ackermann, Heinz Bachmann, Wilfried Buchholz, Georg Cantor, Solomon Feferman, Gerhard Jäger and Wolfram Pohlers. This article is a comparison between various schemes of ordinal notation.
On the other hand, an ordinal collapsing function is a technique for defining certain large countable ordinals. Ordinal collapsing functions are typically denoted using some variation of either the Greek letter psi or theta. They are inextricably intertwined with the theory of ordinal analysis, as they are used to describe the strength of certain formal systems. Ordinal notations and ordinal collapsing functions are often confused: they are not the same, so in this article their strength will be compared.
Anyone who views this article, feel free to add your own notation/function.
Comparison
[edit]Ordinal | ξ notation | Cantor normal form | Veblen φ | Bachmann ψΩ (Rathjen recast) | Feferman θ | Bird θ | Binary198 + |
---|---|---|---|---|---|---|---|
0 | 0 | + | |||||
1 | ξ00 | ω01 | φ00 | ψΩ(0) | θ0(0) | θ(0) | +0 |
2 | ξ0ξ00 | ω02 | +(00) | ||||
ω | ξξ000 | ω11 | φ01 | ψΩ(1) | θ0(1) | θ(1) | +00 |
ω+1 | ξ0ξξ000 | ω11 + ω01 | +0(00) | ||||
ω+2 | ξ0ξ0ξξ000 | ω11 + ω02 | +0(000) | ||||
ω2 | ξξ00ξ00 | ω12 | +0(00|00) | ||||
ω3 | ξξ00ξ0ξ00 | ω13 | +0(00|00|00) | ||||
ω2 | ξξ00ξξ000 | ω21 | φ02 | ψΩ(2) | θ0(2) | θ(2) | +0(00↑00) |
ω3 | ξξ00ξξ00ξξ000 | ω31 | φ03 | ψΩ(3) | θ0(3) | θ(3) | +0(00↑00↑00) |
ωω | ξξ0ξ000 | φ0φ01 | ψΩ(ψΩ(1)) | θ0(θ0(1)) | θ(θ(1)) | +000 | |
ξξξ0000 | φ0φ0φ0φ01 | ψΩ(ψΩ(ψΩ(1))) | θ0(θ0(θ0(1))) | θ(θ(θ(1))) | +0000 | ||
ε0 | φ10 | ψΩ(Ω) | θ1(0) | θ(Ω) | +0+0 | ||
ε1 | φ11 | ψΩ(Ω2) | θ1(1) | θ(Ω+1) | |||
ζ0 | φ20 | ψΩ(Ω2) | θ2(0) | θ(Ω2) | +0+0+0 | ||
ζ1 | φ21 | ψΩ(Ω22) | θ2(1) | θ(Ω2+1) | |||
η0 | φ30 | ψΩ(Ω3) | θ3(0) | θ(Ω3) | +0+0(+0+0) | ||
η1 | φ31 | ψΩ(Ω32) | θ3(1) | θ(Ω3+1) | |||
Γ0 (FSO) | φ100 | ψΩ(ΩΩ) | θΩ(0) | θ(Ω2) | +0+0+0+0 | ||
Γ1 | φ101 | ψΩ(ΩΩ2) | θΩ(1) | θ(Ω2+1) | |||
Ackermann | φ1000 | θ(Ω22) | +0+0+0+(00) | ||||
SVO | θ(Ω2ω) | +0+0+0(+00) | |||||
LVO | θ(Ω3) | +0+0+0+0+0 | |||||
BHO | θ(Ωω) | +0+(00) | |||||
θ(Ωω+1) | |||||||
BO | +0(+00) | ||||||
TFBO | +0(+0(00)) | ||||||
+0(+000) | |||||||
+0(+0+0) |
References
[edit]- Hilbert Levitz, Transfinite Ordinals and Their Notations: For The Uninitiated, expository article (8 pages, in PostScript)
- Pohlers, Wolfram (1989), Proof theory, Lecture Notes in Mathematics, vol. 1407, Berlin: Springer-Verlag, doi:10.1007/978-3-540-46825-7, ISBN 978-3-540-51842-6, MR 1026933
- Schütte, Kurt (1977), Proof theory, Grundlehren der Mathematischen Wissenschaften, vol. 225, Berlin-New York: Springer-Verlag, pp. xii+299, ISBN 978-3-540-07911-8, MR 0505313
- Takeuti, Gaisi (1987), Proof theory, Studies in Logic and the Foundations of Mathematics, vol. 81 (Second ed.), Amsterdam: North-Holland Publishing Co., ISBN 978-0-444-87943-1, MR 0882549
- Smorynski, C. (1982), "The varieties of arboreal experience", Math. Intelligencer, 4 (4): 182–189, doi:10.1007/BF03023553 contains an informal description of the Veblen hierarchy.
- Veblen, Oswald (1908), "Continuous Increasing Functions of Finite and Transfinite Ordinals", Transactions of the American Mathematical Society, 9 (3): 280–292, doi:10.2307/1988605, JSTOR 1988605
- Miller, Larry W. (1976), "Normal Functions and Constructive Ordinal Notations", The Journal of Symbolic Logic, 41 (2): 439–459, doi:10.2307/2272243, JSTOR 2272243
- Buchholz, Wilfried (1986), A New System of Proof-Theoretic Ordinal Functions, pp. 195–207, doi:10.1016/0168-0072(86)90052-7
- Rathjen, Michael. "A history of ordinal representations (notes)" (PDF). Mathematics - University of Munich. Archived from the original (PDF) on 2021-06-09. Retrieved 2021-09-05.
{{cite web}}
:|archive-date=
/|archive-url=
timestamp mismatch; 2007-06-12 suggested (help) - Bachmann, Heinz. "The normal functions and the problem of the explicit sequences of ordinal numbers". ngzf. Retrieved 2021-09-05.
{{cite web}}
: CS1 maint: url-status (link) - Bird, Chris. "The Fast-Growing Hierarchy in Terms of Bird's Array Notations". Googology Wiki. Retrieved 2021-09-05.
{{cite web}}
: CS1 maint: url-status (link)