User:Benjamintsawyer/sandbox
Biodiesel
[edit]Fuel Efficiency
[edit]Biodiesel will have a varying amount of power output depending on its: blend, quality, and load conditions under which the fuel is burnt. The thermal efficiency for example of B100 as compared to B20 will vary due to the BTU content of the various blends. Thermal efficiency of a fuel is based in part on fuel characteristics such as: viscosity, specific density, and flash point; these characteristics will change as the blends as well as the quality of biodiesel varies. The American Society for Testing and Materials has set standards in order to judge the quality of a given fuel sample. [1]
A study on the brake thermal efficiency of varied biodiesel blends were tested under a series of load conditions as well as compression ratios. A part of the trial was comparing the thermal efficiency of B40 to traditional petrodiesel, as well as varying blends of biodiesel; as a result it was found that B40 performed at greater levels of efficiency over its traditional counterpart at higher compression ratios (this higher brake thermal efficiency was recorded at compression ratios of 21:1. It was noted that as the compression ratios increased the efficiency of all fuel types as well as blends being tested increased; though it was found that a blend of B40 was the most economical at a compression ratio of 21:1 over all other blends. The study implied that this increase in efficiency was due to fuel density, viscosity, and heating values of the fuels. [2]
Combustion
[edit]Fuel systems on the modern diesel engine where not designed to accommodate biodiesel. Traditional direct injection fuel systems operate at roughly 3,000 psi at the injector tip while the modern common rail fuel system operates upwards of 30,000 PSI at the injector tip. Components are designed to operate at a great temperature range, from below freezing to over 1,000 degrees Fahrenheit. Diesel fuel is expected to burn efficiently and produce as few emissions as possible. As emission standards are being introduced to diesel engines the need to control harmful emissions is being designed into the parameters of diesel engine fuel systems. The traditional inline injection system is more forgiving to poorer quality fuels as opposed to the common rail fuel system. The higher pressures and tighter tolerances of the common rail system allows for greater control over atomization and injection timing. This control of atomization as well as combustion allows for greater efficiency of modern diesel engines as well as greater control over emissions. Components within a diesel fuel system interact with the fuel in a way to ensure efficient operation of the fuel system and so the engine. If a fuel is introduced to a system-that has specific parameters of operation-and you vary those parameters by an out of specification fuel you may compromise the integrity of the overall fuel system. Some of these parameters such as spray pattern and atomization are directly related to injection timing. [3]
One study looked at these characteristics of biodiesel in a fuel system. It was found that during atomization biodiesel and its blends produced droplets that were greater in diameter than the droplets produced by traditional petrodiesel. The smaller droplets were attributed to the lower viscosity and surface tension of traditional petrol. It was found that droplets at the periphery of the spray pattern were larger in diameter than the droplets at the center this was attributed to the faster pressure drop at the edge of the spray pattern; there was a proportional relationship between the droplet size and the distance from the injector tip. It was found that B100 had the greatest spray penetration, this was attributed to the greater density of B100. [4] Having a greater droplet size can lead to; inefficiencies in the combustion, increased emissions, and decreased horse power. In another study it was found that there is a short injection delay when injecting biodiesel. This injection delay was attributed to the greater viscosity of Biodiesel. It was noted that the higher viscosity and the greater cetane rating of biodiesel over traditional petrodiesel lead to poor atomization, as well as mixture penetration with air during the ignition delay period. [5] Another study noted that this ignition delay may aid in a decrease of Nox emission. [6]
Emissions
[edit]There are a number of emissions that are inherent to the combustion of diesel fuels that are regulated by the Environmental Protection Agency, E.P.A. As these emissions are a byproduct of the combustion process in order to ensure E.P.A. compliance a fuel system must be capable of controlling the combustion of fuels as well as the mitigation of emissions. There are a number of new technologies that are becoming phased in in order to control the production of diesel emissions. The exhaust gas recirculation system, E.G.R., and the diesel particulate filter, D.P.F., are both designed to mitigate the production of harmful emissions. [7]
While studying the effect of biodiesel on a D.P.F. it was found that though the presence of sodium and potassium carbonates aided in the catalytic conversion of ash, as the diesel particulates are catalyzed, they may congregate inside the D.P.F. and so interfere with the clearances of the filter. This may cause the filter to clog and interfere with the regeneration process. [8] In a study on the impact of E.G.R. rates with blends of jathropa biodiesel it was showed that there was a decrease in fuel efficiency and torque output due to the use of biodiesel on a diesel engine designed with an E.G.R. system. It was found that CO and CO2 emissions increased with an increase in exhaust gas recirculation but Nox levels decreased. The opacity level of the jathropa blends was in an acceptable range, where traditional diesel was out of acceptable standards. It was shown that a decrease in Nox emissions could be obtained with an E.G.R. system. This study showed an advantage over traditional diesel within a certain operating range of the E.G.R. system. [9]
References
[edit]- ^ ASTM Standard D6751-12, 2003, "Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels," ASTM International, West Conshohocken, PA, 2003, DOI: 10.1520/C0033-03, www.astm.org.
- ^ Muralidharan, K. K., & Vasudevan, D. D. (2011). Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends. Applied Energy, 88(11), 3959-3968. doi:10.1016/j.apenergy.2011.04.014
- ^ J. Energy Resour. Technol. 131, 032201 (2009) (8 pages); doi:10.1115/1.3185346
- ^ Chen, P., Wang, W., Roberts, W. L., & Fang, T. (2013). Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system. Fuel, 103850-861. doi:10.1016/j.fuel.2012.08.013
- ^ Hwang, J., Qi, D., Jung, Y., & Bae, C. (2014). Effect of injection parameters on the combustion and emission characteristics in a common-rail direct injection diesel engine fueled with waste cooking oil biodiesel. Renewable Energy: An International Journal, 639-17. doi:10.1016/j.renene.2013.08.051
- ^ McCarthy, P. P., Rasul, M. G., & Moazzem, S. S. (2011). Analysis and comparison of performance and emissions of an internal combustion engine fuelled with petroleum diesel and different bio-diesels. Fuel, 90(6), 2147-2157. doi:10.1016/j.fuel.2011.02.010
- ^ United States Environmental Protection Agency. (2014, April 9). National Clean Diesel Campaign. Retrieved From the Environmental Protection Agency website: http://www.epa.gov/diesel/
- ^ Hansen, B., Jensen, A., & Jensen, P. (2013). Performance of diesel particulate filter catalysts in the presence of biodiesel ash species. Fuel, 106234-240. doi:10.1016/j.fuel.2012.11.038
- ^ Gomaa, M. M., Alimin, A. J., & Kamarudin, K. A. (2011). The effect of EGR rates on NOX and smoke emissions of an IDI diesel engine fuelled with Jatropha biodiesel blends. International Journal Of Energy & Environment, 2(3), 477-490.