This is the user sandbox of An Yongle. A user sandbox is a subpage of the user's user page. It serves as a testing spot and page development space for the user and is not an encyclopedia article. Create or edit your own sandbox here.
Finished writing a draft article? Are you ready to request review of it by an experienced editor for possible inclusion in Wikipedia? Submit your draft for review!
AS: Ex da assinatura
AS: Símbolo na K-teoria
AS: Demonstração com grupóides
Outros teoremas do índice: L2, Connes-Moscovici
If is a coarse space, we can associate to it a C*-algebra , called its Roe algebra. If , its support is defined as
Then we define as the completion of the locally compact operators of controlled support in .
A great source for elements of K-homology is given by the Dirac operators on a compact manifold. As an example, consider the Dirac operator
defined on the circle. This is an unbounded operator, but (properly defining its domain) also self-adjoint, so that, through the spectral theorem, we may define its signal NO ORTOGONAL DE C. This operator acts as follows on the basis :
In this construction, two facts are fundamental: firstly, that can always be given a complex structure. This can be seen by noting that
second, it is an open subspace of , and by the realization of K-theory through compactly supported triples, we have an extension homomorphism the topological index is given by the composition , where
is the Thom isomorphism in complex K-theory;
is the extension pushforward homomorphism given by the inclusion.
Seja uma variedade compacta orientável de dimensão . Se representar a soma dos produtos exteriores de grau par do fibrado cotangente, e a soma dos de grau ímpar, defina , considerado como uma aplicação de a . Então o índice analítico de é a característica de Euler de , e o índice analítico é a integral da classe de Euler sobre a variedade. Essa é a versão "topológica" do teorema de Chern-Gauss-Bonnet.
Mais concretamente, segundo uma variação do splitting principle, se é um fibrado vetorial real de dimensão , para provarmos fórmulas envolvendo classes características, é possível supor que existem fibrados de linha complexos tais que . Logo, podemos tratar das raízes de Chern , , .
Usando raízes de Chern como acima e aplicando as propriedades básicas da classe de Euler, temos que . Em relação ao caráter de Chern e à classe de Todd,
Aplicando o teorema do índice,
,
que é a versão topológica do teorema de Chern-Gauss-Bonnet (a geométrica sendo obtida ao aplicarmos o homomorfismo de Chern-Weil)
DIMENSIONALIDADE, ELEMENTO DE DIFERENÇA
Suppose that is a compact oriented manifold of dimension . If we take to be the sum of the even exterior powers of the cotangent bundle, and to be the sum of the odd powers, define , considered as a map from to . Then the topological index of is the Euler characteristic of the Hodge cohomology of , and the analytical index is the Euler class of the manifold. The index formula for this operator yields the Chern–Gauss–Bonnet theorem.
The concrete computation goes as follows: according to one variation of the splitting principle, if is a real vector bundle of dimension , in order to prove assertions involving characteristic classes, we may suppose that there are complex line bundles such that . Therefore, we can consider the Chern roots , , .
Using Chern roots as above and the standard properties of the Euler class, we have that . As for the Chern and Todd classes,
and so the index theorem applies to show that
which is the "topological" version of the Gauss-Bonnet-Chern theorem (the geometric one being obtained by applying the Chern-Weil homomorphism).
Since we are dealing with complex bundles, the computation of the topological index is simpler. Using Chern roots and doing similar computations as in the previous example, the Euler class is given by and
Applying the index theorem, we obtain the Hirzebruch-Riemann-Roch theorem:
Let and be the unit ball and sphere bundles of , respectively. The symbol of an elliptic operator is associated to an element of the K-theory group by the following construction. Let be the group of triples , where and are bundles over and is an isomorphism, except inside a compact subspace of MAIS A EQUIVALENCIA. Then there is an isomorphism , equal to when .
If is the symbol of an elliptic differential operator from to , then is an isomorphism away from the zero section, and so defines an element .
As an example of the above construction, take the bundle
In some situations, it is possible to simplify the above formula for computational purposes. In particular, if is a -dimensional orientable (compact) manifold with non-zero Euler class, then applying the Thom isomorphism and dividing by the Euler class[1][2], the topological index may be expressed as
where division makes sense by pulling back from the cohomology ring of the classifying space.
Theorem—Let be a vector bundle of rank over a paracompact space. There exists a space , called the flag bundle associated to , and a map such that
the induced cohomology homomorphism is injective, and
the pullback bundle breaks up as a direct sum of line bundles:
Teorema—Seja um fibrado vetorial de dimensão sobre um espaço paracompacto . Então existe uma variedade e uma aplicação tal que
o homomorfismo induzido na cohomologia é injetivo e
o pullback se divide como a soma direta de fibrados de linha:
As classes de Chern são ditas as raízes de Chern de . O ponto é que, como é injetiva, toda fórmula envolvendo classes de Chern em vale também em . Para provarmos fórmulas do tipo, portanto, podemos considerar somente somas diretas de fibrados de linha.
O princípio da divisão possui várias variações. A seguinte, em particular, trata de fibrados vetoriais reais e suas complexificações:[3]
Teorema—Seja um fibrado vetorial real de dimensão sobre um espaço paracompacto . Então existe um espaço e uma aplicação tal que
o homomorfismo induzido na cohomologia e injetivo e
o pullback se divide como a soma de fibrados de linha:
The splitting principle admits many variations. The following, in particular, concerns real vector bundles and their complexifications: [4]
Theorem—Let be a real vector bundle of rank over a paracompact space. There exists a space and a map such that
the induced cohomology homomorphism is injective, and
the pullback bundle breaks up as a direct sum of line bundles: