Recherche spatiale
La recherche spatiale regroupe des projets scientifiques qui utilisent des moyens spatiaux (satellite artificiel, sonde spatiale, fusée-sonde, ballon stratosphérique) pour collecter ses données. Elle s'est développée dès le début de l'ère spatiale (1957) et a débouché immédiatement sur de nombreux résultats (découverte de la ceinture de Van Allen par Explorer 1 en ). La recherche spatiale représente entre 20 et 30 % des budgets des agences spatiales des principaux pays : NASA, ESA, CNES.
La recherche spatiale est une source d'apports importants dans de nombreuses disciplines scientifiques :
- l'observation de l’Univers : astronomie, cosmologie, physique fondamentale et exobiologie ;
- l'observation globale de la Terre : géophysique, Sciences de l'environnement, agronomie, risques naturels et la pollution ;
- l'observation in situ du système solaire : physique des plasmas, planétologie comparée, interactions Soleil-Terre (météorologie spatiale) et exobiologie ;
- ainsi que l'expérimentation en microgravité : physique expérimentale et médecine spatiale.
La recherche spatiale joue par ailleurs un rôle moteur dans le développement des techniques spatiales avec des retombées dans des applications terrestres.
Historique
[modifier | modifier le code]Disciplines scientifiques concernées par la recherche spatiale
[modifier | modifier le code]De nombreuses disciplines scientifiques utilisent les moyens spatiaux dans des proportions significatives. Pour certaines d'entre elles comme la géodésie, la cosmologie, l'étude des objets compacts (trous noirs, étoiles à neutrons) ou l'astrométrie les données collectées depuis l'espace jouent un rôle déterminant. Mais même pour celles-ci des observations complémentaires effectuées depuis la surface de la Terre sont utilisées.
Sciences de l'environnement et du climat
[modifier | modifier le code]Les sciences de l'environnement et du climat étudient l'atmosphère terrestre, les océans et les surfaces continentales de la Terre. Elles doivent répondre à des questions concernant l'évolution de la qualité de l'environnement : qualité de l'air, occupation de l'espace, biodiversité, ressources en eau, ressources alimentaires, Ressources énergétiques et autres ressources naturelles, changement climatique. Ces disciplines scientifiques ont besoin des moyens spatiaux pour obtenir des données continues et globales ainsi que pour expliquer les processus à l’œuvre à grande et petite échelle. Des techniques instrumentales expérimentales comme le lidar, l'interférométrie, le recueil de données simultanées par des satellites volant en formation (A-train, GPM) sont mises en œuvre pour parvenir à une simulation fine de la dynamique du système Terre et permettre une prévision de son évolution[1].
Projets : TOPEX/Poseidon, Jason, ERS, Envisat, CryoSat, MetOp-A, Terra, Aura, Aqua, CALIPSO, CloudSat, PARASOL , GPM, GOCE, SMOS, EarthCARE, SWARM, GMES, SWOT
Sciences de la Terre solide
[modifier | modifier le code]Géodésie spatiale
[modifier | modifier le code]La géodésie spatiale met en œuvre différentes techniques spatiales (altimétrie radar, altimétrie laser, la télémétrie laser sur satellites, le recours à des instruments GPS, Doris embarqués) pour mesurer le champ de gravité terrestre et ses variations spatiotemporelles, les déformations de la croute terrestre, les variations du niveau des mers, pour définir les systèmes de référence terrestre et célestes. La géodésie spatiale joue un rôle déterminant dans la modélisation de la structure de la Terre, de la tectonique des plaques, de l'hydrologie continentale et de la dynamique des océans[2].
Projets : GRACE, GOCE, ICESat, CryoSat, TOPEX/Poseidon, Jason 1, 2 et 3, Envisat, ADM-Aeolus
Télédétection spatiale
[modifier | modifier le code]La prise d'images optique et radar depuis l'orbite terrestre avec une résolution inférieure au mètre fournit des éléments essentiels pour la compréhension de la mécanique des séismes, de la dynamique des volcans et du fonctionnement des grandes structures tectoniques actives[3].
Projets : Landsat, SPOT, ERS , JERS-1, Envisat, Sentinelle
La détermination fine du champ magnétique terrestre dont se déduit en partie la structure du noyau terrestre et de sa dynamique a fortement t progressé grâce aux mesures effectuées depuis l'espace[4].
Projets : Magsat, SWARM , Déméter
- Étude de la Terre solide depuis l'espace
Dans ce domaine qui reste à explorer, les caractéristiques structurelles de la croûte terrestre et de la lithosphère pourraient être déduites en partie en étudiant les répercussions des ondes sismiques dans l'ionosphère[4].
Projets :
Système solaire, Soleil, exobiologie et systèmes planétaires
[modifier | modifier le code]Physique solaire
[modifier | modifier le code]L'étude du Soleil a considérablement progressé grâce à l'observation depuis l'espace des émissions du Soleil (vent solaire, rayonnement X et gamma) qui sont hors de portée des instruments terrestres car interceptées par l'atmosphère. La mise en place d'observatoires spatiaux emportant des instruments de plus en plus performants permet de recueillir de manière continue des données continues sur l'activité du Soleil qui permettent de mieux modéliser les processus à l'œuvre[5].
Projets : SOHO, Genesis, SDO, STEREO, Solar Orbiter, Solar Probe Plus
- Plasmas spatiaux
Les satellites permettent l'étude in situ du milieu interplanétaire en particulier de la magnétosphère terrestre, de celle de Saturne et de Mercure ainsi que de l'héliosphère du Soleil et de ses limites[6].
Projets : Voyager 1, Cluster, Ulysses, MMS, Cassini-Huygens, BepiColombo, Solar Orbiter
Systèmes planétaires
[modifier | modifier le code]L'exploration du système solaire par les sondes spatiales a permis d'établir les caractéristiques des principaux objets présents : planètes terrestres et géantes gazeuses, lunes, astéroïdes, comètes et objet transneptuniens (en cours). La planétologie comparée, l'étude de vestiges des débuts de la formation du système solaire apportent des éléments fondamentaux permettant de modéliser la formation du système solaire et l'histoire des planètes et des lunes[7].
Projets : Programme Voyager, Giotto, Galileo, Cassini-Huygens, Rosetta, Venus Express, Dawn, MESSENGER, Mars Science Laboratory, Mars Express, Mars Reconnaissance Orbiter, Stardust, Kepler, Gaia, New Horizons, Juno, JUICE, programme ExoMars, BepiColombo, Genesis, MAVEN
Astronomie
[modifier | modifier le code]- Cosmologie et univers lointain
Dans ce domaine qui porte sur la formation et l'évolution des galaxies, l'apport d'instruments placés dans l'espace porte sur la détection des objets les plus lointains.
Projets : Hubble, Spitzer, Chandra, James Webb
Objets compacts
[modifier | modifier le code]Les objets compacts - étoiles à neutrons et trous noirs - sont détectés à travers les émissions de rayons X et gamma qui ne peuvent être observées que depuis l'espace. La détection d'ondes gravitationnelles, dont l'existence ne relève encore que de la théorie, devrait apporter de nouvelles informations sur les objets compacts[8].
Projets :
Les observations effectues depuis l'espace sont essentielles pour l'étude des phases initiale et finale du cycle de vie des étoiles, la détection des planètes extrasolaires et la détermination des caractéristiques des étoiles à travers la sismologie stellaire[9].
Projets : Hubble, SIO, XMM-Newton, Spitzer, Herschel
Astrométrie
[modifier | modifier le code]L'astrométrie est la branche de l'astronomie qui évalue la position, la distance et le mouvement des étoiles et des autres objets célestes. Les retombées sont fondamentales dans le domaine de l'astronomie. C'est un domaine dans lequel le recours à des engins spatiaux est incontournable[10].
Physique fondamentale et cosmologie
[modifier | modifier le code]- Cosmologie
L'étude du contenu de l'Univers (énergie noire, matière noire) et son évolution dans le temps, thèmes principaux de la cosmologie, reposent essentiellement sur des mesures spatiales du rayonnement CMB et l'observation depuis l'espace des supernovae de type IA[11].
- Gravitation
L'établissement d'une théorie unifiée de la physique reste un but à atteindre. Différences expériences spatiales portant sur le principe d'équivalence ou la détection des ondes gravitationnelles visent à faire avancer ce domaine de recherche fondamentale[12].
Projets : Microscope, Pharao, NGO
Physique
[modifier | modifier le code]- Physique des fluides
L'observation de fluides en environnement de microgravité doit permettre de connaitre les propriétés de ceux-ci au repos[13].
Projets : Foton, DECLIC et Fluid Science Laboratory (Station spatiale internationale)
Sciences de la vie
[modifier | modifier le code]- Effets de la gravité
L'objectif des études dans ce domaine visent à déterminer comment la gravité a contribué à façonner le monde animal et végétal et, dans la perspectives de missions spatiales de longue durée, dans quelle mesure l'homme peut s'adapter à un environnement caractérisé par l'absence de gravité ou une gravité réduite[14].
Projets : CARDIOLAB, Cardiomed, CARDIOSPACE
Moyens techniques
[modifier | modifier le code]Fusée-sonde
[modifier | modifier le code]
Une fusée-sonde, dans le domaine de l'astronautique, est une fusée décrivant une trajectoire suborbitale permettant d'effectuer des mesures et des expériences dans la haute atmosphère. Elle est utilisée principalement pour étudier celle-ci in situ, faire des observations astronomiques dans des bandes d'ondes bloquées par l'atmosphère terrestre, effectuer des expériences de microgravité et mettre au point des instruments spatiaux.
Ballon stratosphérique
[modifier | modifier le code]
Un ballon stratosphérique est un aérostat capable d'atteindre la stratosphère. Les ballons stratosphériques sont utilisés pour les prévisions météorologiques, pour effectuer des mesures de composition de l'atmosphère, pour réaliser des expériences d'astronomie, et pour des missions d'observation civile ou militaire. Le plafond de vol d'un ballon stratosphérique est d'environ 50 km et la durée du vol est comprise selon le type entre quelques heures et quelques mois.
Satellites et sondes spatiales
[modifier | modifier le code]
Un satellite artificiel est un objet fabriqué par l'être humain, envoyé dans l'espace à l'aide d'un lanceur et gravitant autour d'une planète ou d'un satellite naturel comme la Lune. La vitesse imprimée par le lanceur au satellite lui permet de se maintenir pratiquement indéfiniment dans l'espace en décrivant une orbite autour du corps céleste. Celle-ci, définie en fonction de la mission du satellite, peut prendre différentes formes — héliosynchrone, géostationnaire, elliptique, circulaire — et se situer à des altitudes plus ou moins élevées, classées en orbite basse, moyenne ou haute.
Le premier satellite artificiel, Spoutnik 1, est lancé par l'URSS en 1957. Depuis cette époque, environ 11 500 satellites artificiels ont été placés en orbite (courant 2021). Les satellites jouent désormais un rôle important à la fois sur les plans économique (télécommunications, positionnement, prévision météorologique), militaire (renseignement) et scientifique (observation astronomique, microgravité, observation de la Terre, océanographie, altimétrie). Ils sont devenus des instruments incontournables pour notre compréhension de l'univers physique, la modélisation des changements climatiques et le fonctionnement de la société de l'information.
Un satellite artificiel est composé d'une charge utile, définie spécifiquement pour la mission qu'il doit remplir, et d'une plate-forme souvent standardisée assurant les fonctions de support comme la fourniture d'énergie, la propulsion, le contrôle thermique, le maintien de l'orientation et les communications. Le satellite est suivi par un centre de contrôle au sol, qui envoie des instructions et recueille les données collectées grâce à un réseau de stations terriennes. Pour remplir sa mission, le satellite doit se maintenir sur une orbite de référence en orientant ses instruments de manière précise : des interventions sont nécessaires à intervalles réguliers pour corriger les perturbations naturelles de l'orbite générées, dans le cas d'un satellite terrestre, par les irrégularités du champ de gravité, l'influence du Soleil et de la Lune ainsi que la traînée créée par l'atmosphère qui subsiste en orbite basse.
Les progrès techniques permettent aujourd'hui de mettre en orbite des satellites plus lourds (jusqu'à six tonnes et demie pour les satellites de télécommunications), capables de remplir des missions toujours plus sophistiquées (satellites scientifiques), avec une grande autonomie. La durée de vie d'un satellite, variable selon le type de mission, peut atteindre quinze ans. Les progrès de l'électronique permettent également de concevoir des microsatellites capables d'effectuer des missions élaborées.
La construction de satellites donne naissance à une industrie très spécialisée, mais les instruments les plus complexes sont encore souvent réalisés par des laboratoires de recherche. La conception d'un satellite, difficilement reproductible lorsqu'il ne s'agit pas d'un satellite de télécommunications, est un processus qui peut prendre une dizaine d'années dans le cas d'un satellite scientifique. Les coûts de fabrication qui peuvent monter à plusieurs centaines de millions d'euros et ceux de lancement (de l'ordre de 10 000 à 20 000 dollars américains par kilogramme) limitent aujourd'hui le développement de cette activité qui, hormis le secteur des télécommunications très rentable pour les opérateurs, est subventionnée pour l'essentiel par les budgets publics.

Une sonde spatiale est un véhicule spatial sans équipage lancé dans l'espace pour étudier à plus ou moins grande distance différents objets célestes : le Soleil, les planètes, planètes naines et petits corps, leurs satellites, le milieu interplanétaire ou encore le milieu interstellaire. Une sonde spatiale présente généralement des caractéristiques uniques qui la distingue des autres engins spatiaux non habités, lesquels restent en orbite terrestre. Les sondes spatiales peuvent prendre un grand nombre de formes pour remplir leur mission : orbiteur placé en orbite autour du corps céleste observé, atterrisseur qui explore in situ le sol de la planète cible, impacteur, etc. Une sonde peut emporter des engins autonomes pour accroître son champ d'investigation : sous-satellite, impacteur, astromobile (rover), ballon, aérobot.
Une sonde spatiale est amenée à franchir de grandes distances et à fonctionner loin de la Terre et du Soleil, ce qui impose des équipements spécifiques. Elle doit disposer de suffisamment d'énergie pour fonctionner dans des régions où le rayonnement solaire ne fournit plus qu'une puissance limitée, disposer d'une grande autonomie de décision car l'éloignement du centre de contrôle ne permet plus aux opérateurs humains de réagir en temps réel aux événements, résoudre des problèmes de télécommunications rendus difficiles par les distances qui réduisent les débits et résister au rayonnement et à des températures extrêmes qui malmènent l'électronique embarquée et les mécanismes. Enfin, pour parvenir à destination à un coût et dans des délais acceptables, la sonde spatiale est amenée à utiliser des méthodes sophistiquées de navigation et de propulsion : assistance gravitationnelle, aérofreinage, propulsion ionique.
Les premières sondes spatiales sont les sondes Luna lancées vers la Lune par l'Union soviétique en 1959. En 1961, l'Union soviétique lance Venera, la première sonde amenée à étudier une autre planète que la Terre, en l'occurrence Vénus. La Russie, qui était leader au début de l'ère spatiale n'a plus de rôle actif depuis 1988 et a laissé cette place aux États-Unis. L'Agence spatiale européenne (Mars Express, Venus Express, Rosetta, participation à la sonde Cassini-Huygens) et le Japon (Hayabusa, SELENE) occupent également une place croissante. Enfin, la Chine et l'Inde réalisent également depuis la fin des années 2000 des sondes spatiales. Pour pallier un coût de développement élevé (montant pouvant dépasser le milliard d'euros), la réalisation des sondes spatiales fait maintenant souvent l'objet d'une coopération internationale.
Organisation
[modifier | modifier le code]Recherche spatiale en France
[modifier | modifier le code]La recherche spatiale en France résulte en grande partie d'une démarche volontariste de l'État. L'agence spatiale française, le CNES, joue un rôle central en définissant les programmes avec les différents acteurs et en assurant la distribution des moyens financiers. La recherche spatiale se réalise autour de deux des instituts du CNRS - l’Institut national des sciences de l'univers et l’Institut National de Physique Nucléaire et de Physique de Particules - auxquels sont associés des centres de recherche situés dans les universités. Des liens forts existent avec des centres de recherche des autres pays participants aux projets de l'Agence spatiale européenne ainsi qu'avec des instituts de recherche d'autres pays, en particulier les États-Unis, l'Inde, le Japon et la Chine, dans le cadre de projets spatiaux le plus souvent bilatéraux[15].
Notes et références
[modifier | modifier le code]- ↑ La recherche spatiale française 2006, p. 23-26
- ↑ La recherche spatiale française 2006, p. 28
- ↑ La recherche spatiale française 2006, p. 28-29
- La recherche spatiale française 2006, p. 29
- ↑ La recherche spatiale française 2006, p. 34-35
- ↑ La recherche spatiale française 2006, p. 35
- ↑ La recherche spatiale française 2006, p. 35-36.
- ↑ La recherche spatiale française 2006, p. 40.
- ↑ La recherche spatiale française 2006, p. 41.
- ↑ La recherche spatiale française 2006, p. 42.
- ↑ La recherche spatiale française 2006, p. 46-47.
- ↑ La recherche spatiale française 2006, p. 48
- ↑ La recherche spatiale française 2006, p. 50
- ↑ La recherche spatiale française 2006, p. 53-55
- ↑ La recherche spatiale française 2006, p. IX
Voir aussi
[modifier | modifier le code]Bibliographie
[modifier | modifier le code]- sous la direction de Jean Louis Puget, La recherche spatiale française : rapport sur la science et la technologie n°22 (Académie des sciences), 91-Les Ulis, EDP Sciences, , 120 p. (ISBN 2-86883-887-1).
Articles connexes
[modifier | modifier le code]- Committee on Space Research (COSPAR)