Quantum algebra
Appearance
This article relies largely or entirely on a single source. (May 2024) |
This article may contain improper references to user-generated content. (May 2024) |
In mathematics, quantum algebra is the study of noncommutative analogues and generalizations of commutative algebras, especially those arising in Lie theory.[1]. It is one of the top-level mathematics categories used by the arXiv, and is a unification of algebraic deformations, Hopf algebras, category theory, topology, noncommutative geometry, and quantum groups within quantum mechanics and quantum field theory.[2][3][4][5]
Subjects include:
- Quantum groups
- Skein theories
- Operadic algebra
- Diagrammatic algebra
- Quantum field theory
- Racks and quandles
See also
[edit]References
[edit]- ^ "What is quantum algebra?". mathoverflow.net. Retrieved 2018-01-22.
- ^ "Quantum Algebra". arxiv.org. Retrieved 2025-10-27.
- ^ "Quantum Algebra -- from Wolfram Library Archive". library.wolfram.com. Retrieved 2025-10-27.
- ^ Saller, Heinrich, ed. (2006), "Quantum Algebras", Operational Quantum Theory I: Nonrelativistic Structures, New York, NY: Springer, pp. 255–300, doi:10.1007/0-387-34643-0_8, ISBN 978-0-387-34643-4, retrieved 2025-10-30
- ^ "quantum algebra in nLab". ncatlab.org. Retrieved 2025-10-27.
External links
[edit]