Jump to content

Quantum algebra

From Wikipedia, the free encyclopedia

In mathematics, quantum algebra is the study of noncommutative analogues and generalizations of commutative algebras, especially those arising in Lie theory.[1]. It is one of the top-level mathematics categories used by the arXiv, and is a unification of algebraic deformations, Hopf algebras, category theory, topology, noncommutative geometry, and quantum groups within quantum mechanics and quantum field theory.[2][3][4][5]

Subjects include:

See also

[edit]

References

[edit]
  1. ^ "What is quantum algebra?". mathoverflow.net. Retrieved 2018-01-22.
  2. ^ "Quantum Algebra". arxiv.org. Retrieved 2025-10-27.
  3. ^ "Quantum Algebra -- from Wolfram Library Archive". library.wolfram.com. Retrieved 2025-10-27.
  4. ^ Saller, Heinrich, ed. (2006), "Quantum Algebras", Operational Quantum Theory I: Nonrelativistic Structures, New York, NY: Springer, pp. 255–300, doi:10.1007/0-387-34643-0_8, ISBN 978-0-387-34643-4, retrieved 2025-10-30
  5. ^ "quantum algebra in nLab". ncatlab.org. Retrieved 2025-10-27.
[edit]