Jump to content

Monadic descent

From Wikipedia, the free encyclopedia

In mathematics, especially category theory, a monadic descent is roughly an idea to encode descent data using a monad.

Bénabou-Roubaud theorem

[edit]

The Bénabou-Roubaud theorem says that (roughly) given a bifibration satisfying the Beck–Chevalley condition for p, the category of descent data is canonically equivalent to the category of algebras of the monad induced by .

See also

[edit]

References

[edit]
  • Bénabou, Jean; Roubaud, Jacques (1970). "Monades et descente". C. R. Acad. Sc. Paris, Ser. A 270: 96–98. Zbl 0287.18007.
  • Kahn, Bruno (2025). "On the Bénabou-Roubaud theorem" (PDF). Cahiers de topologie et géométrie différentielle catégoriques. LXVI (2): 3–12. arXiv:2404.00868.
  • Janelidze, George; Tholen, Walter (1994). "Facets of descent, I". Applied Categorical Structures. 2 (3): 245–281. doi:10.1007/BF00878100.
  • Janelidze, G.; Tholen, W. (1997). "Facets of Descent, II". Applied Categorical Structures. 5 (3): 229–248. doi:10.1023/A:1008697013769.

Further reading

[edit]