Modèl Lhermite yo pèmèt ke nou sentetize yon pakèt eleman oubyen objè ant yo.
Modèl Lhermite yo pèmèt sentetize...
1 S 20 v 20 konsène lansman flèch, nou kapab li chapit 20 an pou nou ka genyen yon meyè ide .
Gen 3 posibilite lè ou lanse yon flèch.
Tout swit kwasant nonm antye kapab ekri konsa :
e pi jeneralman :
avèk
e



![{\displaystyle P_{n}=\sum _{i=1}^{2^{n}}\left(\left[{\frac {1+\sum _{m=1}^{i}{\left(1-\left[{\frac {\left[{\frac {\left(m!\right)^{2}}{m^{3}}}\right]}{\frac {\left(m!\right)^{2}}{m^{3}}}}\right]\right)}}{n+1}}\right]\times {\left[{\frac {n+1}{1+\sum _{m=1}^{i}{\left(1-\left[{\frac {\left[{\frac {\left(m!\right)^{2}}{m^{3}}}\right]}{\frac {\left(m!\right)^{2}}{m^{3}}}}\right]\right)}}}\right]}\times {i}\times {\left({1-\left[{\frac {\left[({\frac {\left(i!\right)^{2}}{i^{3}}}\right]}{\frac {\left(i!\right)^{2}}{i^{3}}}}\right]}\right)}\right)}](/media/api/rest_v1/media/math/render/svg/a0946b407445219cfc3ec9900eed730007347fb4)
![{\displaystyle P_{n}=\sum _{i=1}^{2^{2^{n}}}\left(\left[{\frac {1+\sum _{m=1}^{i}{\left(1-\left[{\frac {\left[{\frac {\left(m!\right)^{2}}{m^{3}}}\right]}{\frac {\left(m!\right)^{2}}{m^{3}}}}\right]\right)}}{n+1}}\right]\times {\left[{\frac {n+1}{1+\sum _{m=1}^{i}{\left(1-\left[{\frac {\left[{\frac {\left(m!\right)^{2}}{m^{3}}}\right]}{\frac {\left(m!\right)^{2}}{m^{3}}}}\right]\right)}}}\right]}\times {i}\times {\left({1-\left[{\frac {\left[({\frac {\left(i!\right)^{2}}{i^{3}}}\right]}{\frac {\left(i!\right)^{2}}{i^{3}}}}\right]}\right)}\right)}](/media/api/rest_v1/media/math/render/svg/52b295c95b44a63a27ae3723067b4a20270c6009)


Nou kapab avanse

![{\displaystyle \left[{\frac {\left[{\frac {\left(n-1\right)!+1}{n}}\right]}{\frac {\left(n-1\right)!+1}{n}}}\right]=1\Leftrightarrow n\in \mathbb {P} }](/media/api/rest_v1/media/math/render/svg/99364afae24af599bbe2af20694e8e722372de7d)
li evidan

![{\displaystyle \left[{\frac {\left[{\frac {\left(n-1\right)!+1}{n}}\right]}{\frac {\left(n-1\right)!+1}{n}}}\right]=0\Leftrightarrow n\notin \mathbb {P} }](/media/api/rest_v1/media/math/render/svg/fa8e6a11d47bf53e58b6509be6603a3ef4fd944c)
Alò annakò avèk modèl Lhermite yo ak teyorèm Wilson yo, nou gen teyorèm sa yo :

![{\displaystyle \left[{\frac {\left[{\frac {\left(n-1\right)!+1}{n}}\right]}{\frac {\left(n-1\right)!+1}{n}}}\right]-\left[{\frac {1}{n}}\right]=1\Leftrightarrow n\in \mathbb {P} }](/media/api/rest_v1/media/math/render/svg/5aaa75d2021b515de6f190709d7959b4d272e958)

![{\displaystyle \left[{\frac {\left[{\frac {\left(n-1\right)!+1}{n}}\right]}{\frac {\left(n-1\right)!+1}{n}}}\right]-\left[{\frac {1}{n}}\right]=0\Leftrightarrow n\notin \mathbb {P} }](/media/api/rest_v1/media/math/render/svg/3aa35b931a2af95e1aefb663ba1bf0b280d224fa)
Nou gen relasyon sa yo

![{\displaystyle \left[{\frac {\left[{\frac {\left(n-1\right)!+1}{n}}\right]}{\frac {\left(n-1\right)!+1}{n}}}\right]-\left[{\frac {1}{n}}\right]=1-\left[{\frac {\left[{\frac {\left(n!\right)^{2}}{n^{3}}}\right]}{\frac {\left(n!\right)^{2}}{n^{3}}}}\right]}](/media/api/rest_v1/media/math/render/svg/e0435fc2dd31061b79667b73d8f1eef38ecfe00f)
an chwazi you nan fòmil yo
![{\displaystyle P_{n}=\sum _{i=1}^{2^{2^{n}}}\left(\left[{\frac {1+\sum _{m=1}^{i}{\left(1-\left[{\frac {\left[{\frac {\left(m!\right)^{2}}{m^{3}}}\right]}{\frac {\left(m!\right)^{2}}{m^{3}}}}\right]\right)}}{n+1}}\right]\times {\left[{\frac {n+1}{1+\sum _{m=1}^{i}{\left(1-\left[{\frac {\left[{\frac {\left(m!\right)^{2}}{m^{3}}}\right]}{\frac {\left(m!\right)^{2}}{m^{3}}}}\right]\right)}}}\right]}\times {i}\times {\left({1-\left[{\frac {\left[({\frac {\left(i!\right)^{2}}{i^{3}}}\right]}{\frac {\left(i!\right)^{2}}{i^{3}}}}\right]}\right)}\right)}](/media/api/rest_v1/media/math/render/svg/52b295c95b44a63a27ae3723067b4a20270c6009)
an ranplase
an ranplase
e
Yon ekspresyon ekivalant se :
![{\displaystyle P_{n}=\sum _{i=1}^{2^{2^{n}}}{\left(\left[{\frac {1+\sum _{m=1}^{i}{\left(\left[{\frac {\left[{\frac {\left(m-1\right)!+1}{m}}\right]}{\frac {\left(m-1\right)!+1}{m}}}\right]-\left[{\frac {1}{m}}\right]\right)}}{n+1}}\right]\times \left[{\frac {n+1}{1+\sum _{m=1}^{i}{\left(\left[{\frac {\left[{\frac {\left(m-1\right)!+1}{m}}\right]}{\frac {\left(m-1\right)!+1}{m}}}\right]-\left[{\frac {1}{m}}\right]\right)}}}\right]\times i\times \left(\left[{\frac {\left[{\frac {\left(i-1\right)!+1}{i}}\right]}{\frac {\left(i-1\right)!+1}{i}}}\right]-\left[{\frac {1}{i}}\right]\right)\right)}}](/media/api/rest_v1/media/math/render/svg/ae7912c5604317945c06f2f09f737d60fee1b48a)
Boul wouj ak boul ble nan kad nonm premye annakò avèk teyorèm Wilson
[modifye | modifye kòd]
An nou fè menm bagay pou :
Klike sou referans lan pou ka wè youn nan fòmil yo
[1]
Boul wouj ak boul ble nan kad nonm premye Mèsèn annakò avèk teyorèm Wilson
[modifye | modifye kòd]
![{\displaystyle \Omega \left(n\right)=\sum _{j=1}^{n}\left({\sum _{i=1}^{n}{\left({{\left[{\frac {\left[{\frac {n}{i^{j}}}\right]}{\left({\frac {n}{i^{j}}}\right)}}\right]}\times \left(1-\left[{\frac {\left[{\frac {\left(i!\right)^{2}}{i^{3}}}\right]}{\frac {\left(i!\right)^{2}}{i^{3}}}}\right]\right)}\right)}}\right)}](/media/api/rest_v1/media/math/render/svg/53c13673228cae2bd48a059d1dabd4e167cf7a65)
![{\displaystyle \lambda \left(n\right)=\left(-1\right)^{\left(\sum _{j=1}^{n}\left({\sum _{i=1}^{n}{\left({{\left[{\frac {\left[{\frac {n}{i^{j}}}\right]}{\left({\frac {n}{i^{j}}}\right)}}\right]}\times \left(1-\left[{\frac {\left[{\frac {\left(i!\right)^{2}}{i^{3}}}\right]}{\frac {\left(i!\right)^{2}}{i^{3}}}}\right]\right)}\right)}}\right)\right)}}](/media/api/rest_v1/media/math/render/svg/15ebb460496e5b870bf8ba9b0928105acb3fb6e5)