Jump to content

IPv4 shared address space

From Wikipedia, the free encyclopedia

An IPv4 shared address space is a block of Internet Protocol version 4 addresses for use by Internet service providers (ISPs) to alleviate the risk of address duplication with downstream private address networks. An example of use is in carrier-grade NAT (CGN) applications.

For such special purposes, the Internet Assigned Numbers Authority (IANA) has reserved a /10 size IPv4 address block to be used as shared address space.[1] This block of addresses is specifically meant to be used for implementations of carrier-grade NAT, to connect customer-premises equipment (CPE) to the providers' core routers.

Instead of using unique addresses from the rapidly depleting pool of available globally unique IPv4 addresses, ISPs use addresses in 100.64.0.0/10 for this purpose. Because the network between CPEs and the ISP's routers is private to each ISP, all ISPs may share this block of addresses.

Background

[edit]

If an ISP deploys a CGN and uses private Internet address space[2] (networks 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16) to connect their customers, the risk arises for address collision with a customer's downstream network, resulting in routing failure of traffic to external destinations.

This prompted some ISPs to develop policy within the American Registry for Internet Numbers (ARIN) to allocate new private address space for CGNs. ARIN, however, deferred to the Internet Engineering Task Force (IETF) before implementing the policy, indicating that the matter was not typical allocation but a reservation for technical purposes.[3]

In 2012, the IETF defined a Shared Address Space[4] for use in ISP CGN deployments and NAT devices that can handle the same addresses occurring on both inbound and outbound interfaces. ARIN returned space to the IANA as needed for this allocation and[5] "The allocated address block is 100.64.0.0/10".[4][6]

Transition to IPv6

[edit]

The use of shared address space is one of the various methods to allow transition from IPv4 to IPv6. Its main purpose was to postpone the depletion of IPv4 addresses, by allowing ISPs to introduce a second layer of NATting. A common practice is to give CPEs a unique IPv4 address on their Internet-facing interface and use NAT to hide all addresses on the home LAN. Since the pool of available public IPv4 addresses is depleted, it is no longer possible for most ISPs to assign unique IPv4 addresses to CPEs, because there are none left to them to acquire. Instead, an address in the 100.64.0.0/10 range is assigned on the CPE's Internet-facing interface, and this address is translated again to one of the public IPv4 addresses of the ISP's core routers. Using shared address space allows ISPs to continue to use IPv4 as they were used to. This scheme hides a large number of IP addresses behind a small set of public addresses, the same way the CPE does this locally, slowing down the rate IPv4 addresses are depleted. The shared address space contains 222 or 4194304 addresses, so each ISP is able to connect over 4 million subscribers this way.

Other occurrences

[edit]

In BIND, empty reverse mapping zones for 100.64.0.0/16 through 100.127.0.0/16 (64 zones in total) are automatically created in the 'internal' view, if not configured otherwise.

See also

[edit]

References

[edit]
  1. ^ M. Cotton; L. Vegoda; B. Haberman (April 2013). R. Bonica (ed.). Special-Purpose IP Address Registries. Internet Engineering Task Force. doi:10.17487/RFC6890. ISSN 2070-1721. BCP 153. RFC 6890. Best Current Practice 153. Obsoletes RFC 4773, 5156, 5735 and 5736. Updated by RFC 8190.
  2. ^ Y. Rekhter; B. Moskowitz; D. Karrenberg; G. J. de Groot; E. Lear (February 1996). Address Allocation for Private Internets. Network Working Group. doi:10.17487/RFC1918. BCP 5. RFC 1918. Best Current Practice 5. Obsoletes RFC 1627 and 1597. Updated by RFC 6761.
  3. ^ B. Carpenter; F. Baker; M. Roberts (June 2000). Memorandum of Understanding Concerning the Technical Work of the Internet Assigned Numbers Authority. Network Working Group. doi:10.17487/RFC2860. RFC 2860. Informational.
  4. ^ a b J. Weil; V. Kuarsingh; C. Donley; C. Liljenstolpe; M. Azinger (April 2012). IANA-Reserved IPv4 Prefix for Shared Address Space. Internet Engineering Task Force. doi:10.17487/RFC6598. ISSN 2070-1721. BCP 153. RFC 6598. Best Current Practice 153. Updates RFC 5735.
  5. ^ "Re: shared address space... a reality!". Retrieved 13 September 2012.
  6. ^ "100.64.0.0/10 – Shared Transition Space". 2012-03-14.