Jump to content

Generalized uncertainty principle

From Wikipedia, the free encyclopedia

The generalized uncertainty principle (GUP) is a proposed extension of the Heisenberg uncertainty principle that incorporates potential effects of gravitational interactions into quantum mechanical systems. It emerges from several approaches to quantum gravity, including string theory, loop quantum gravity, and quantum geometry, and suggests the existence of a minimum measurable length, typically associated with the Planck scale.

A commonly used formulation of the GUP is:

,

where and represent the uncertainties in position and momentum, is the reduced Planck constant, and is a parameter related to the minimal length scale. This modification implies that position measurements cannot be made with arbitrary precision, as there exists a fundamental lower bound to spatial resolution. The concept is motivated by the expectation that classical notions of spacetime may break down at extremely small scales, such as the Planck length.[1][2]

Several forms of the GUP have been proposed in the literature, varying in mathematical structure and underlying theoretical assumptions, depending on the specific model of quantum gravity being considered.[3][4][5][6][7][8][9] [10][11][12]

Observable consequences

[edit]

The GUP's phenomenological and experimental implications have been examined across low and high-energy contexts, encompassing atomic systems,[13][14] quantum optical systems,[15] gravitational bar detectors,[16] gravitational decoherence,[17] and macroscopic harmonic oscillators,[18] further extending to composite particles,[19] and astrophysical systems.[20][clarification needed]

References

[edit]
  1. ^ Hossenfelder, Sabine (2013). "Minimal Length Scale Scenarios for Quantum Gravity". Living Reviews in Relativity. 16 (1): 2. arXiv:1203.6191. Bibcode:2013LRR....16....2H. doi:10.12942/lrr-2013-2. PMC 5255898. PMID 28179841.
  2. ^ Adler, Ronald J.; Santiago, David I. (1999). "On Gravity and the Uncertainty Principle". Modern Physics Letters A. 14 (20): 1371–1381. arXiv:gr-qc/9904026. Bibcode:1999MPLA...14.1371A. doi:10.1142/S0217732399001462. S2CID 23960215.
  3. ^ Snyder, Hartland S. (1 January 1947). "Quantized Space-Time". Phys. Rev. 71 (1): 38–41. Bibcode:1947PhRv...71...38S. doi:10.1103/PhysRev.71.38.
  4. ^ Amati, D.; Ciafaloni, M.; Veneziano, G. (1989). "Can spacetime be probed below the string size?" (PDF). Physics Letters B. 216 (1–2): 41–47. Bibcode:1989PhLB..216...41A. doi:10.1016/0370-2693(89)91366-X.
  5. ^ Garay, L. J. (1995). "Quantum gravity and minimum length". International Journal of Modern Physics A. 10 (2): 145–166. arXiv:gr-qc/9403008. Bibcode:1995IJMPA..10..145G. doi:10.1142/S0217751X95000085.
  6. ^ Scardigli, F. (1999). "Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment". Physics Letters B. 452 (1–2): 39–44. arXiv:hep-th/9904025. Bibcode:1999PhLB..452...39S. doi:10.1016/S0370-2693(99)00167-7.
  7. ^ Brau, F. (1999). "Minimal Length Uncertainty Relation and Hydrogen Atom". Journal of Physics A: Mathematical and General. 32 (44): 7691–7696. arXiv:quant-ph/9905033. Bibcode:1999JPhA...32.7691B. doi:10.1088/0305-4470/32/44/308.
  8. ^ Kempf, A.; Mangano, G.; Mann, R. B. (1995). "Hilbert space representation of the minimal length uncertainty relation". Physical Review D. 52 (2): 1108–1118. arXiv:hep-th/9412167. Bibcode:1995PhRvD..52.1108K. doi:10.1103/PhysRevD.52.1108. PMID 10019328.
  9. ^ Maggiore, M. (1993). "A Generalized Uncertainty Principle in Quantum Gravity". Physics Letters B. 304 (1–2): 65–69. arXiv:hep-th/9301067. Bibcode:1993PhLB..304...65M. doi:10.1016/0370-2693(93)91401-8.
  10. ^ Capozziello, S.; Lambiase, G.; Scarpetta, G. (1999). "The Generalized Uncertainty Principle from Quantum Geometry". International Journal of Theoretical Physics. 39 (1): 15–22. doi:10.1023/A:1003634814685.
  11. ^ Todorinov, V.; Bosso, P.; Das, S. (2019). "Relativistic Generalized Uncertainty Principle". Annals of Physics. 405: 92–100. arXiv:1810.11761. Bibcode:2019AnPhy.405...92T. doi:10.1016/j.aop.2019.03.014.
  12. ^ Ali, A. F.; Das, S.; Vagenas, E. C. (2009). "Discreteness of Space from the Generalized Uncertainty Principle". Physics Letters B. 678 (5): 497–499. arXiv:0906.5396. Bibcode:2009PhLB..678..497A. doi:10.1016/j.physletb.2009.06.061.
  13. ^ Ali, Ahmed Farag; Das, Saurya; Vagenas, Elias C. (2011-08-03). "Proposal for testing quantum gravity in the lab". Physical Review D. 84 (4): 044013. arXiv:1107.3164. Bibcode:2011PhRvD..84d4013A. doi:10.1103/PhysRevD.84.044013.
  14. ^ Das, Saurya; Vagenas, Elias C. (2008-11-25). "Universality of Quantum Gravity Corrections". Physical Review Letters. 101 (22): 221301. arXiv:0810.5333. Bibcode:2008PhRvL.101v1301D. doi:10.1103/PhysRevLett.101.221301. PMID 19113472.
  15. ^ Pikovski, Igor; Vanner, Michael R.; Aspelmeyer, Markus; Kim, M. S.; Brukner, Časlav (May 2012). "Probing Planck-scale physics with quantum optics". Nature Physics. 8 (5): 393–397. arXiv:1111.1979. Bibcode:2012NatPh...8..393P. doi:10.1038/nphys2262. ISSN 1745-2481.
  16. ^ Marin, Francesco; Marino, Francesco; Bonaldi, Michele; Cerdonio, Massimo; Conti, Livia; Falferi, Paolo; Mezzena, Renato; Ortolan, Antonello; Prodi, Giovanni A.; Taffarello, Luca; Vedovato, Gabriele; Vinante, Andrea; Zendri, Jean-Pierre (February 2013). "Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables" (PDF). Nature Physics. 9 (2): 71–73. Bibcode:2013NatPh...9...71M. doi:10.1038/nphys2503. ISSN 1745-2481.
  17. ^ Petruzziello, Luciano; Illuminati, Fabrizio (2021-07-22). "Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale" (PDF). Nature Communications. 12 (1): 4449. arXiv:2011.01255. Bibcode:2021NatCo..12.4449P. doi:10.1038/s41467-021-24711-7. ISSN 2041-1723. PMC 8298405. PMID 34294717.
  18. ^ Bawaj, Mateusz; Biancofiore, Ciro; Bonaldi, Michele; Bonfigli, Federica; Borrielli, Antonio; Di Giuseppe, Giovanni; Marconi, Lorenzo; Marino, Francesco; Natali, Riccardo; Pontin, Antonio; Prodi, Giovanni A.; Serra, Enrico; Vitali, David; Marin, Francesco (2015-06-19). "Probing deformed commutators with macroscopic harmonic oscillators" (PDF). Nature Communications. 6 (1): 7503. arXiv:1411.6410. Bibcode:2015NatCo...6.7503B. doi:10.1038/ncomms8503. ISSN 2041-1723. PMC 4557370. PMID 26088965.
  19. ^ Kumar, Shreya P.; Plenio, Martin B. (2020-08-06). "On quantum gravity tests with composite particles" (PDF). Nature Communications. 11 (1): 3900. arXiv:1908.11164. Bibcode:2020NatCo..11.3900K. doi:10.1038/s41467-020-17518-5. ISSN 2041-1723. PMC 7413341. PMID 32764700.
  20. ^ Moradpour, H; Ziaie, A H; Ghaffari, S; Feleppa, F (2019-09-01). "The generalized and extended uncertainty principles and their implications on the Jeans mass" (PDF). Monthly Notices of the Royal Astronomical Society: Letters. 488 (1): L69 – L74. arXiv:1907.12940. doi:10.1093/mnrasl/slz098. ISSN 1745-3925.