Zum Inhalt springen

Datei:Variations of the Fourier transform.tif

Seiteninhalte werden in anderen Sprachen nicht unterstützt.
Zur Beschreibungsseite auf Commons
aus Wikipedia, der freien Enzyklopädie

Originaldatei (1.536 × 1.344 Pixel, Dateigröße: 401 KB, MIME-Typ: image/tiff)

Diese Datei und die Informationen unter dem roten Trennstrich werden aus dem zentralen Medienarchiv Wikimedia Commons eingebunden.

Zur Beschreibungsseite auf Commons


Dieses Bild des Typs Math sollte als Vektorgrafik im SVG-Format neu erstellt werden. Vektorformate haben zahlreiche Vorteile; weitere Information unter Commons:Media for cleanup. Wenn dir eine SVG-Version dieses Bildes vorliegt, so lade diese bitte hoch. Nach dem Hochladen der Datei ist diese Vorlage auf der aktuellen Bildbeschreibungsseite durch die Vorlage {{Vector version available}}, oder kürzer {{Vva}}, zu ersetzen. Es ist empfohlen die neue SVG-Datei „Variations of the Fourier transform.svg“ zu nennen – dann benötigt die Vorlage vector version available (bzw. vva) keinen Parameter.

Beschreibung

Beschreibung
English: Illustration of using Dirac comb functions and the convolution theorem to model the effects of sampling and/or periodic summation. At lower left is a DTFT, the spectral result of sampling s(t) at intervals of T. The spectral sequences at (a) upper right and (b) lower right are respectively computed from (a) one cycle of the periodic summation of s(t) and (b) one cycle of the periodic summation of the s(nT) sequence. The respective formulas are (a) the Fourier series integral and (b) the DFT summation. The relative computational ease of the DFT sequence and the insight it gives into S(f) make it a popular analysis tool.
Datum
Quelle Eigenes Werk
Urheber Bob K
Genehmigung
(Weiternutzung dieser Datei)
Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
Creative Commons CC-Zero Diese Datei wird unter der Creative-Commons-Lizenz CC0 1.0 Verzicht auf das Copyright zur Verfügung gestellt.
Die Person, die das Werk mit diesem Dokument verbunden hat, übergibt dieses weltweit der Gemeinfreiheit, indem sie alle Urheberrechte und damit verbundenen weiteren Rechte – im Rahmen der jeweils geltenden gesetzlichen Bestimmungen – aufgibt. Das Werk kann – selbst für kommerzielle Zwecke – kopiert, modifiziert und weiterverteilt werden, ohne hierfür um Erlaubnis bitten zu müssen.

Andere Versionen File:Fourier_transform,_Fourier_series,_DTFT,_DFT.svg, File:Fourier_transform,_Fourier_series,_DTFT,_DFT.gif
Source code
InfoField
 
Diese TIF-Rastergrafik wurde von Bob K mit LibreOffice erstellt.
Quelltext
InfoField

LibreOffice code

Source code
pkg load signal
graphics_toolkit gnuplot
%=======================================================
% Consider the Gaussian function e^{-B (nT)^2}, where B is proportional to bandwidth.
  T = 1;
% Choose a relatively small bandwidth, so that one cycle of the DTFT approximates a true Fourier transform.
  B = 0.1;
  N = 1024;
  t = T*(-N/2 : N/2-1);                         % 1xN
  y = exp(-B*t.^2);                             % 1xN
% The DTFT has a periodicity of 1/T=1.  Sample it at intervals of 1/8N, and compute one full cycle.
% Y = fftshift(abs(fft([y zeros(1,7*N)])));
% Or do it this way, for comparison with the sequel:
  X = [-4*N:4*N-1];                             % 1x8N
  xlimits = [min(X) max(X)];
  f = X/(8*N);
  W = exp(-j*2*pi * t' * f);                    % Nx1 × 1x8N = Nx8N
  Y = abs(y * W);                               % 1xN × Nx8N = 1x8N
% Y(1)  = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π ×-4096/8N × t(n)) }
% Y(2)  = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π ×-4095/8N × t(n)) }
% Y(8N) = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π × 4095/8N × t(n)) }
  Y = Y/max(Y);

% Resample the function to reduce the DTFT periodicity from 1 to 3/8.
  T = 8/3;
  t = T*(-N/2 : N/2-1);                         % 1xN
  z = exp(-B*t.^2);                             % 1xN
% Resample the DTFT.
  W = exp(-j*2*pi * t' * f);                    % Nx1 × 1x8N = Nx8N
  Z = abs(z * W);                               % 1xN × Nx8N = 1x8N
  Z = Z/max(Z);
%=======================================================
hfig = figure("position", [1 1 1200 900]);

x1 = .08;                   % left margin for annotation
x2 = .02;                   % right margin
dx = .05;                   % whitespace between plots
y1 = .08;                   % bottom margin
y2 = .08;                   % top margin
dy = .12;                   % vertical space between rows
height = (1-y1-y2-dy)/2;    % space allocated for each of 2 rows
width  = (1-x1-dx-x2)/2;    % space allocated for each of 2 columns
x_origin1 = x1;
y_origin1 = 1 -y2 -height;  % position of top row
y_origin2 = y_origin1 -dy -height;
x_origin2 = x_origin1 +dx +width;
%=======================================================
% Plot the Fourier transform, S(f)

subplot("position",[x_origin1 y_origin1 width height])
area(X, Y, "FaceColor", [0 .4 .6])
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
%xlabel("frequency")
%=======================================================
% Plot the DTFT

subplot("position",[x_origin1 y_origin2 width height])
area(X, Z, "FaceColor", [0 .4 .6])
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
xlabel("frequency")
%=======================================================
% Sample S(f) to portray Fourier series coefficients

subplot("position",[x_origin2 y_origin1 width height])
stem(X(1:128:end), Y(1:128:end), "-", "Color",[0 .4 .6]);
set(findobj("Type","line"),"Marker","none")
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
%xlabel("frequency")
box on
%=======================================================
% Sample the DTFT to portray a DFT

FFT_indices = [32:55]*128+1;
DFT_indices = [0:31 56:63]*128+1;
subplot("position",[x_origin2 y_origin2 width height])
stem(X(DFT_indices), Z(DFT_indices), "-", "Color",[0 .4 .6]);
hold on
stem(X(FFT_indices), Z(FFT_indices), "-", "Color","red");
set(findobj("Type","line"),"Marker","none")
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
xlabel("frequency")
box on
%=======================================================
% Output (or use the export function on the GNUPlot figure toolbar).
print(hfig,"-dtif", "-S1200,900","-color", 'C:\Users\BobK\Fourier transform, Fourier series, DTFT, DFT.tif')

LaTex

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.
A Fourier transform and 3 variations caused by periodic sampling (at interval T) and/or periodic summation (at interval P) of the underlying time-domain function.

In dieser Datei abgebildete Objekte

Motiv

image/tiff

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell16:45, 13. Dez. 2011Vorschaubild der Version vom 16:45, 13. Dez. 20111.536 × 1.344 (401 KB)Bob KReplaced an accidently cropped formula with an uncropped version.
07:59, 13. Dez. 2011Vorschaubild der Version vom 07:59, 13. Dez. 20111.536 × 1.344 (535 KB)Bob K

Keine Seiten verwenden diese Datei.

Globale Dateiverwendung

Die nachfolgenden anderen Wikis verwenden diese Datei:

Metadaten