Jump to content

Brownian motion and Riemann zeta function

From Wikipedia, the free encyclopedia

In mathematics, the Brownian motion and the Riemann zeta function are two central objects of study originating from different fields - probability theory and analytic number theory - that have deep mathematical connections between them. The relationships between stochastic processes derived from the Brownian motion and the Riemann zeta function show in a sense inuitively the stochastic behaviour underlying the Riemann zeta function. A representation of the Riemann zeta function in terms of stochastic processes is called a stochastic representation.

Brownian Motion and the Riemann Zeta Function

[edit]

Let denote the Riemann zeta function and the gamma function, then the Riemann xi function is defined as

satisfying the functional equation

It turns out that describes the moments of a probability distribution [1]

Brownian Bridge and Riemann Zeta Function

[edit]

In 1987 Marc Yor and Philippe Biane proved that the random variable defined as the difference between the maximum and minimum of a Brownian bridge describes the same distribution. A Brownian bridge is a one-dimensional Brownian motion conditioned on .[2] They showed that

is a solution for the above moment equation. However, this is not the only process that follows this distribution.

Bessel Process and Riemann Zeta Function

[edit]

A Bessel process of order is the Euclidean norm of a -dimensional Brownian motion. The process is defined as

Define the hitting time and let be an independent hitting time of another process. Define the random variable

then we have

[3][1]

Distribution

[edit]

Let be the Radon–Nikodym density of the distribution , then the density satisfies the equation[4]

for the theta function[1]

An alternative parametrization yields[3]

with explicit form

where and

Bibliography

[edit]
  • Roger Mansuy and Marc Yor (2008). Aspects of Brownian Motion. Universitext. Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-49966-4. ISBN 978-3-540-22347-4.

References

[edit]
  1. ^ a b c Roger Mansuy and Marc Yor (2008). Aspects of Brownian Motion. Universitext. Springer, Berlin, Heidelberg. pp. 165–167. doi:10.1007/978-3-540-49966-4. ISBN 978-3-540-22347-4.
  2. ^ Philippe Biane and Marc Yor (1987). "Valeurs principales associées aux temps locaux browniens". Bulletin de Science Mathématique (in French). 111: 23–101.
  3. ^ a b Philippe Biane, Jim Pitman, and Marc Yor (2001). "Probability laws related to the Jacobi theta and Riemann zeta function and Brownian excursions". Bulletin of the American Mathematical Society. 38 (4): 435–465. arXiv:math/9912170. doi:10.1090/S0273-0979-01-00912-0.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Roger Mansuy and Marc Yor (2008). Aspects of Brownian Motion. Universitext. Springer, Berlin, Heidelberg. pp. 165–167. doi:10.1007/978-3-540-49966-4. ISBN 978-3-540-22347-4.