Bernstein's theorem (approximation theory)
Appearance
In approximation theory, Bernstein's theorem is a converse to Jackson's theorem.[1] The first results of this type were proved by Sergei Bernstein in 1912.[2]
For approximation by trigonometric polynomials, the result is as follows:
Let f: [0, 2π] → ℂ be a 2 π periodic function, and assume r is a positive integer, and that 0 < α < 1 . If there exists some fixed number and a sequence of trigonometric polynomials for which and for every then f(x) = Pn0(x) + φ(x) , where the function φ(x) has a bounded r th derivative which is α-Hölder continuous.
See also
[edit]References
[edit]- ^ Achieser, N.I. (1956). Theory of Approximation. New York: Frederick Ungar Publishing Co.
- ^ Bernstein, S.N. (1952). Collected works, 1. Moscow. pp. 11–104.
{{cite book}}
: CS1 maint: location missing publisher (link)