BGS conjecture
![]() | This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
The Bohigas–Giannoni–Schmit (BGS) conjecture also known as the random matrix conjecture) for simple quantum mechanical systems (ergodic with a classical limit) few degrees of freedom holds that spectra of time reversal-invariant systems whose classical analogues are K-systems show the same fluctuation properties as predicted by the GOE (Gaussian orthogonal ensembles).[1][2][further explanation needed]
Alternatively, the spectral fluctuation measures of a classically chaotic quantum system coincide with those of the canonical random-matrix ensemble in the same symmetry class (unitary, orthogonal, or symplectic).[further explanation needed]
That is, the Hamiltonian of a microscopic analogue of a classical chaotic system can be modeled by a random matrix from a Gaussian ensemble as the distance of a few spacings between eigenvalues of a chaotic Hamiltonian operator generically statistically correlates with the spacing laws for eigenvalues of large random matrices.[further explanation needed]
A simple example of the unfolded quantum energy levels in a classically chaotic system correlating like that would be Sinai billiards:[further explanation needed]
- Energy levels: [definition needed]
- Spectral density:
- Average spectral density:
- Correlation:
- Unfolding:
- Unfolded correlation:
- BGS conjecture:
The conjecture remains unproven despite supporting numerical evidence.[citation needed]
References
[edit]- ^ Bohigas, O.; Giannoni, M. J.; Schmit, C. (2010), "Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws", Spectral Distributions in Nuclei and Statistical Spectroscopy, World Scientific Publishing Co. Pte. Ltd., pp. 420–423, doi:10.1142/9789814287395_0024 (inactive 1 April 2025), ISBN 978-981-4287-39-5, retrieved 2025-03-06
{{citation}}
: CS1 maint: DOI inactive as of April 2025 (link) - ^ Bohigas, O.; Giannoni, M.J.; Schmit, C. (1984). "Spectral properties of the Laplacian and random matrix theories". Journal de Physique Lettres. 45 (21): 1015–1022. doi:10.1051/jphyslet:0198400450210101500. ISSN 0302-072X.