跳转到内容

榛蘑

维基百科,自由的百科全书

蜜環菌屬
蜜環菌
科学分类 编辑
界: 真菌界 Fungi
门: 担子菌门 Basidiomycota
纲: 傘菌綱 Agaricomycetes
目: 伞菌目 Agaricales
科: 膨瑚菌科 Physalacriaceae
属: 蜜環菌屬 Armillaria
(Fr.) Staude
模式種
Armillaria mellea
(Vahl) P. Kumm.
多样性
约45种
異名
  • Aphotistus Humboldt, 1793
  • Polymyces Battarra ex F.S.Earle, 1909
蜜环菌属
查看產生下列表格的真菌學模板
查看產生下列表格的真菌學模板
真菌形态特徵
子實層上有菌褶
蕈傘為凸面
子實層連生
環狀蕈柄
孢印白色
寄生真菌
可食用

榛蘑蘑菇纲蘑菇目泡头菌科蜜环菌属學名Armillaria,又名松覃屬)真菌的通称[1]。生长在树木、灌木丛当中。是一类广泛分布于北半球温带地区的真菌类群[2]。该属拥有大约45个物种,多为世界上体积最大的生物。其中,该属下体积最大的奥氏蜜环菌Armillaria ostoyae)在美国俄勒冈州的菌丝群落覆盖面积约890公顷,菌索总长度约5.6千米,相当于1665个足球场,重达35000吨[1]。蜜环菌属的寿命在2400年以上,有的甚至能达到8650岁[3]。有的蜜环菌属会发光,导致了狐火英语foxfire (bioluminescence)的现象[4]

蜜环菌属真菌的营养方式多样,可寄生共生腐生[1]。其发达的地下菌索可延伸数千至数万米[5][6],并能在不良环境中长期保持活性[1]

分类学

[编辑]

18世纪有关蜜环菌属的最早记录将其置于蘑菇属Agaricus[1]。1766年,马丁·瓦尔在《丹尼卡植物志》(Flora Danica)中首次描述了Agaricus melleus并配图,其后被视为蜜环菌属的模式种[7][8]埃利亚斯·芒努斯·弗里斯在1821年基于来自瑞士的材料将其放在Armillaria类群中[9],1857年Staude将其正式提升为属级分类[10]

2006年,基于多个基因片段的系统分析对口蘑科的多个属进行了重新分类,泡头菌科(Physalacriaceae)被分出来成为一个独立的单系群,蜜环菌属被归入泡头菌科[11]

形态特征

[编辑]

蜜环菌属的形态鉴定主要依赖子实体菌索特征,包括菌环是否存在、菌柄结构、菌幕残留、菌盖色泽与表面装饰(如鳞片的颜色与纹理)等,有助于将蜜环菌属与近缘的假蜜环菌属Desarmillaria)区分[12]

下属物种

[编辑]

本属包括以下物种:[13]

共生关系

[编辑]

蜜环菌属真菌可与兰科植物天麻的营养繁殖茎形成兰科菌根[1]。能够与天麻共生的蜜环菌物种包括粗柄蜜环菌A. cepistipes)、九妹蜜环菌Ar. nabsnona)等至少7种[14]

蜜环菌属中的奥氏蜜环菌A. ostoyae)与高卢蜜环菌A. gallica)等可与猪苓形成共生[1]。菌索侵入猪苓菌核后诱发免疫反应,使其菌丝木质化并形成隔离腔,腔内包裹两者菌丝[1]。蜜环菌分解猪苓菌丝获得营养,而猪苓亦利用蜜环菌菌丝提供的代谢物以发育新菌核[15][16]。菌核的隔离结构亦能限制蜜环菌进一步侵入造成伤害[6]

寄生与腐生

[编辑]

蜜环菌属中多数物种可侵染植物根部,引发根朽病,使寄主死亡并分解其组织,属于半活体营养型真菌[1]。已记录的寄主超过500种,包括黑橡木红松蒙古栎葡萄[17][18][19][20][21]。大多数病原蜜环菌属于兼性寄生[22]

侵染期间,菌索进入活根形成层,导致变色和结构破坏[1];之后通过分泌纤维素酶木质素过氧化物酶等降解酶[23],分解宿主体内复杂聚合物为可利用营养物质,最终造成根部腐烂和植株死亡[24]

当寄主死亡后,蜜环菌从活体营养转为腐生阶段,以死组织和腐殖质为生,并能在土壤中长期存活,待条件适宜时重新侵染活体植物[24][25]

参考资料

[编辑]
  1. ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 冀瑞卿; 陈鹏, 周吉江, 孙孟莹, 陈俊良, 刘淑艳, 李长田, 李玉. 强大而神秘的蜜环菌属真菌:基于研究进展的开发前景展望. 菌物学报. 2025, 44 (8): 240356 [2025-11-24]. doi:10.13346/j.mycosystema.240356. 
  2. ^ Koch, RA; Herr, JR. Global Distribution and Richness of Armillaria and Related Species Inferred From Public Databases and Amplicon Sequencing Datasets.. Frontiers in microbiology. 2021, 12: 733159. PMID 34803949. doi:10.3389/fmicb.2021.733159. 
  3. ^ Anderson, James B.; Bruhn, Johann N.; Kasimer, Dahlia; Wang, Hao; Rodrigue, Nicolas; Smith, Myron L. Clonal evolution and genome stability in a 2500-year-old fungal individual. Proceedings of the Royal Society B: Biological Sciences. 2018-12-19, 285 (1893): 20182233. doi:10.1098/rspb.2018.2233. 
  4. ^ Foxfire: Bioluminescent Fungi. inamidst.com. [2018-02-13]. (原始内容存档于2021-03-07). 
  5. ^ Yafetto, L. The structure of mycelial cords and rhizomorphs of fungi: A minireview. Mycosphere. 2018, 9 (5): 984–998. doi:10.5943/mycosphere/9/5/3. 
  6. ^ 6.0 6.1 Xing, YM; Li, B; Liu, L; Li, Y; Yin, SX; Yin, SC; Chen, J; Guo, SX. Armillaria mellea Symbiosis Drives Metabolomic and Transcriptomic Changes in Polyporus umbellatus Sclerotia.. Frontiers in microbiology. 2021, 12: 792530. PMID 35185819. doi:10.3389/fmicb.2021.792530. 
  7. ^ Watling, R.; Kile, G.A.; Gregory, Norma M. The genus Armillaria-nomenclature, typification, the identity of Armillaria mellea and species differentiation. Transactions of the British Mycological Society. 1982-04, 78 (2): 271–285. doi:10.1016/S0007-1536(82)80011-9. 
  8. ^ Volk, Thomas J.; Burdsall, Harold H. A Nomenclatural Study of Armillaria and Armillariella Species (Basidiomycotina, Tricholomataceae). Fungiflora. 1995. ISBN 978-82-90724-14-1 (英语). 
  9. ^ Fries, Elias Magnus. Systema mycologicum. 1. Gryphiswaldae : Mauritius. 1821: 1–26. 
  10. ^ Koch, RA; Wilson, AW; Séné, O; Henkel, TW; Aime, MC. Resolved phylogeny and biogeography of the root pathogen Armillaria and its gasteroid relative, Guyanagaster.. BMC evolutionary biology. 2017-01-25, 17 (1): 33. PMID 28122504. doi:10.1186/s12862-017-0877-3. 
  11. ^ Matheny, PB; Curtis, JM; Hofstetter, V; Aime, MC; Moncalvo, JM; Ge, ZW; Slot, JC; Ammirati, JF; Baroni, TJ; Bougher, NL; Hughes, KW; Lodge, DJ; Kerrigan, RW; Seidl, MT; Aanen, DK; DeNitis, M; Daniele, GM; Desjardin, DE; Kropp, BR; Norvell, LL; Parker, A; Vellinga, EC; Vilgalys, R; Hibbett, DS. Major clades of Agaricales: a multilocus phylogenetic overview.. Mycologia. 2006-11, 98 (6): 982–95. PMID 17486974. doi:10.3852/mycologia.98.6.982. 
  12. ^ Kedves, O; Shahab, D; Champramary, S; Chen, L; Indic, B; Bóka, B; Nagy, VD; Vágvölgyi, C; Kredics, L; Sipos, G. Epidemiology, Biotic Interactions and Biological Control of Armillarioids in the Northern Hemisphere.. Pathogens (Basel, Switzerland). 2021-01-16, 10 (1). PMID 33467216. doi:10.3390/pathogens10010076. 
  13. ^ Armillaria (Fr.) Staude. GBIF. [2022-05-14]. (原始内容存档于2021-12-09). 
  14. ^ Guo, T; Wang, HC; Xue, WQ; Zhao, J; Yang, ZL. Phylogenetic Analyses of Armillaria Reveal at Least 15 Phylogenetic Lineages in China, Seven of Which Are Associated with Cultivated Gastrodia elata.. PloS one. 2016, 11 (5): e0154794. PMID 27138686. doi:10.1371/journal.pone.0154794. 
  15. ^ Guo, Z; Zang, Y; Zhang, L. The efficacy of Polyporus Umbellatus polysaccharide in treating hepatitis B in China.. Progress in molecular biology and translational science. 2019, 163: 329–360. PMID 31030753. doi:10.1016/bs.pmbts.2019.03.012. 
  16. ^ Liu, L; Xing, Y; Li, S; Zhou, L; Li, B; Guo, S. Different Symbiotic Species of Armillaria Affect the Yield and Active Compound Contents of Polyporus umbellatus.. Microorganisms. 2025-01-22, 13 (2). PMID 40005595. doi:10.3390/microorganisms13020228. 
  17. ^ Wargo, Philip M. Armillaria Root Rot: The Puzzle Is Being Solved. Plant Disease. 1985, 69 (10): 826. doi:10.1094/PD-69-826. 
  18. ^ Entry, J. A. Response of Western Coniferous Seedlings to Infection by Armillaria ostoyae Under Limited Light and Nitrogen. Phytopathology. 1991, 81 (1): 89. doi:10.1094/Phyto-81-89. 
  19. ^ Lee, Christopher A.; Dey, Daniel C.; Muzika, Rose-Marie. Oak stump-sprout vigor and Armillaria infection after clearcutting in southeastern Missouri, USA. Forest Ecology and Management. 2016-08, 374: 211–219. doi:10.1016/j.foreco.2016.05.014. 
  20. ^ Kim, M.-S.; Blaedow, R. A.; McKeever, K. M.; Olatinwo, R. O.; Klopfenstein, N. B. First Report of the Armillaria Root Disease Pathogen, Armillaria solidipes , on Black Oak ( Quercus velutina ) in North Carolina, U.S.A.. Plant Disease. 2023-07-01, 107 (7): 2261. doi:10.1094/PDIS-11-22-2689-PDN. 
  21. ^ Perazzolli, M.; Faccin, S.; Ciccotti, A.M.; Schwarz, F.; Moser, M.; De Luca, F.; Velasco, R.; Gessler, C.; Pertot, I.; Moser, C. TRANSCRIPTIONAL ANALYSIS OF THE GRAPE DEFENCE RESPONSE AGAINST THE ROOT ROT AGENT ARMILLARIA MELLEA. Acta Horticulturae. 2009-05, (827): 619–622. doi:10.17660/ActaHortic.2009.827.108. 
  22. ^ Rishbeth, J. Infection cycle of Armillaria and host response. European Journal of Forest Pathology. 1985-10, 15 (5-6): 332–341. doi:10.1111/j.1439-0329.1985.tb01108.x. 
  23. ^ Jagtap, SS; Dhiman, SS; Kim, TS; Li, J; Lee, JK; Kang, YC. Enzymatic hydrolysis of aspen biomass into fermentable sugars by using lignocellulases from Armillaria gemina.. Bioresource technology. 2013-04, 133: 307–14. PMID 23434807. doi:10.1016/j.biortech.2013.01.118. 
  24. ^ 24.0 24.1 Hanna, J. W.; Klopfenstein, N. B.; Cram, M. M.; Olatinwo, R. O.; Fraedrich, S. W.; Kim, M.-S. First Report of Armillaria Root Disease Pathogen, Armillaria gallica , on Rhododendron and Quercus rubra in Georgia, U.S.A.. Plant Disease. 2021-04, 105 (4): 1226–1226. doi:10.1094/PDIS-07-20-1567-PDN. 
  25. ^ Linnakoski, Riikka; Sutela, Suvi; Coetzee, Martin P. A.; Duong, Tuan A.; Pavlov, Igor N.; Litovka, Yulia A.; Hantula, Jarkko; Wingfield, Brenda D.; Vainio, Eeva J. Armillaria root rot fungi host single-stranded RNA viruses. Scientific Reports. 2021-04-01, 11 (1). doi:10.1038/s41598-021-86343-7. 

外部链接

[编辑]