Zum Inhalt springen

Cantor-Verteilung

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 18. September 2010 um 10:17 Uhr durch VolkovBot (Diskussion | Beiträge) (Bot: Ergänze: it:Variabile casuale di Cantor). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Die Cantor-Verteilung ist eine Wahrscheinlichkeitsverteilung, die singulär bezüglich des Lebesgue-Maßes ist. Die dazugehörige Verteilungsfunktion wird als Cantorfunktion bezeichnet.

Plot der Cantorfunktion (10 Iterationen)

Konstruktion der Cantor-Verteilung

Die Cantorverteilung (mit als Borelsche σ-Algebra) kann nicht so einfach explizit angegeben werden. Sie muss konstruiert werden, ähnlich wie die Cantormenge.

1. Variante der Konstruktion

Wenn man vom gleichverteilten Maß auf der Menge ausgeht, erhält man auf der Menge ein Produktmaß. Dieses Maß lässt sich so interpretieren: Man betrachtet ein Experiment, in dem unendlich oft eine faire Münze geworfen wird; Elemente von lassen sich als Ausgänge des Experiments interpretieren (die Folge bedeutet zum Beispiel, dass immer abwechselnd Kopf und Zahl aufgetreten sind). Das Maß weist einer Teilmenge von nun seine Wahrscheinlichkeit zu. Zum Beispiel besagt das starke Gesetz der großen Zahlen, dass die Menge der „gleichverteilten“ Folgen Wahrscheinlichkeit 1 hat, wobei die folgenden Menge ist:

Das oben genannte Maß lässt sich durch die oben genannte Bijektion in ein Wahrscheinlichkeitsmaß auf der Cantormenge übersetzen. (Eine alternative Beschreibung von ergibt sich als Hausdorffmaß zur Dimension .)

Dieses Wahrscheinlichkeitsmaß ist die Cantor-Verteilung ein Beispiel für ein Maß, dessen Verteilungsfunktion zwar stetig, aber nicht absolut stetig ist. Die Verteilungsfunktion

heißt Cantorfunktion (auch „cantorsche Treppenfunktion“). Auf jedem Intervall im Komplement der Cantormenge ist diese Funktion konstant; auf dem Intervall hat sie zum Beispiel den Wert 1/2, und auf dem Intervall hat sie den Wert 1/4.

2. Variante der Konstruktion

Bei dieser Konstruktion wird die Cantorfunktion konstruiert, welche nach dem Korrespondenzsatz die Cantor-Verteilung eindeutig bestimmt.

Sei das System aller Teilmengen von , welche als Vereinigung von endlich vielen disjunkten abgeschlossenen nichtleeren Intervallen dargestellt werden kann und gegeben durch (mit )

Sei weiterhin mit

.

Die Cantormenge mit

Nun wird das Maß folgen definiert:

,

wobei das eindimensionale Lebesgue-Maß bezeichnet. ist offensichtlich ein Wahrscheinlichkeitsmaß, die dazugehörige Verteilungsfunktion sei . Für gilt:

Für gilt insbesondere und .

Da gleichmäßig konvergent ist die Cantorfunktion durch

eindeutig definiert. Die dazugehörige Verteilung ist die Cantor-Verteilung .

Eigenschaften

  • Die Cantorverteilung ist singulär bezüglich dem Lebesgue-Maß.
  • Die Cantorverteilung ist eine symmetrische Verteilung.
  • Die Cantorverteilung besitzt keine Lebesgue-Dichte.
  • Die Cantorfunktion ist stetig.
  • Die Cantorfunktion ist also fast überall differenzierbar mit Ableitung 0, aber dennoch nicht konstant.