Zum Inhalt springen

Wikipedia:Redaktion Physik/Qualitätssicherung

Abschnitt hinzufügen
aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 17. Januar 2010 um 15:41 Uhr durch Dogbert66 (Diskussion | Beiträge) (Roton (Physik): anm). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Letzter Kommentar: vor 15 Jahren von Dogbert66 in Abschnitt Roton (Physik)

Wikipedia:Redaktion Physik/Kopf

Alle Diskussionen, zu denen 45 Tage lang nichts beigetragen wurde, werden automatisch archiviert. Wird der Baustein „Erledigt“ gesetzt ({{Erledigt|~~~|~~~~~}}), so werden Diskussionen nach einer Woche archiviert.

Fehler bei Vorlage * Parametername unbekannt (Vorlage:Autoarchiv-Erledigt): "Modus"

Fehler bei Vorlage (Vorlage:Autoarchiv-Erledigt): Das Archiv im Parameter Ziel ist nicht im aktuellen Namensraum "Wikipedia".

Auf dieser Seite sollen in verschiedenen Rubriken Artikel zu physikalischen Themen eingetragen werden. Das genaue Vorgehen in den unterschiedlichen Fällen ist:

  • Artikel mit qualitativen Mängeln sollten mit dem Baustein {{QS-Physik}} versehen werden. Ihre Verbesserung wird hier im Abschnitt „Qualitätssicherung“ diskutiert. Hinweise zum Verfassen guter Artikel befinden sich auf Wikipedia:Redaktion_Physik/Hinweise für Autoren.
  • Artikel mit qualitativen Mängeln, die mehrere naturwissenschaftliche Fachbereiche betreffen (also keine rein physikalischen Probleme), sollten nicht hier, sondern auf der gemeinsamen Qualitätssicherungsseite der Redaktion Naturwissenschaft und Technik eingetragen werden.
  • Neue Artikel (etwa der letzten vier Wochen) finden sich in der entsprechenden Liste im Bereich Wartung. Sie sollten dann gelesen werden, um zu entscheiden, ob sie in die Qualitätssicherung müssen.
  • Ebenfalls im Bereich Wartung finden sich Links zu den diskutierten Redundanzen und Löschkandidaten aus dem Bereich Physik.

Hier sind vier Links, um kürzlich erfolgte Veränderungen zu evaluieren.

Qualitätssicherung Physik

Atom und Atommodell

Im Moment ist der Abschnitt "Atommodelle" im Artikel Atom ähnlich ausführlich wie der FachartikelAtommodell. Diese Redundanz sollte aufgelöst werden. Ich bin etwas unsicher, in welche Richtung das gehen sollte. Ich sehe zwei entgegengesetzte Möglichkeiten. Man könnte die Atommodelle ganz aus dem Artikel Atom heraus nehmen und nur darauf verweisen, dass es sie gibt und dass sie den Fortschritt der Atomphysiik reflektieren. Alternativ könnte man die Atommodelle nur im Artikel Atom behandeln und Atommodell als Redirect dorthin einrichten. Das macht aus wissenschaftstheoretischer Sicht Sinn. Denn was ein Atom ist wissen wir nicht. Wir haben nur die jeweiligen Modelle. In gewisser Weise ist das ein ähnlicher Fall wie beim Transformator (nur ohne die zugehörigen unermüdlichen Kombattanten...). Was meint Ihr?---<(kmk)>- 01:53, 29. Aug. 2009 (CEST)Beantworten

Ich halte zusammenfügen für sinnvoller. Das Atom von den Modellen zu trennen, macht die Sache nur schwieriger. Freundliche Grüße, --Michael Lenz 02:44, 29. Aug. 2009 (CEST)Beantworten

Also der Artikel Atommodell erscheint mir derzeit eher wie eine verkorkste BKL. Haufenweise Mikroabschnitte mit Verweisen auf Hauptartikel. Eine Zusammenführung in Atom halte ich dennoch für die schlechtere Lösung. Ganz einfach aus dem Grund, dass im Artikel nicht die Geschichte der Atommodelle stehen soll, sondern nur das aktuell allgemein akzeptierte. Dieser "neue und verkürzte" Abschnitt sollte zudem mit dem Abschnitt "Aufbau" zusammen geführt und die etwas ausführlichen Beschreibungen zu den Modellen von Atom nach Atommodelle überführt werden. --Cepheiden 09:20, 29. Aug. 2009 (CEST)Beantworten
Sehe ich genauso. -- Belsazar 09:41, 29. Aug. 2009 (CEST)Beantworten
Wir glauben heute zu wissen, wie wir ein Atom exakt beschreiben können. Dennoch verwenden wir, um uns das Denken zu erleichtern, für verschiedene Zwecke Gedankenmodelle des Atoms mit unterschiedlichem Vereinfachungsgrad, beispielsweise das Orbitalmodell oder das Harte-Kugeln-Modell. Der geeignete Platz, diese Modelle zu beschreiben, ist der Atom-Artikel, wobei ja mehrere Atommodelle auch eigene Artikel haben und diese auch behalten können. Im Atom-Artikel genügt daher jeweils eine Kurzdarstellung. Diejenigen Modelle, die einmal vorgeschlagen wurden, aber heute nicht mehr verwendet werden, haben ihren Platz ggf. in der Beschreibung der Forschungsgeschichte; dort dürfen auch Sackgassen und Irrwege ausgeleuchtet werden. Die Forschungsgeschichte zum Atom kann ggf., sofern so viel Stoff zusammen kommt, dass der Rahmen des Atom-Hauptartikel gesprengt wird, aus diesem ausgelagert werden. --Zipferlak 04:06, 11. Sep. 2009 (CEST)Beantworten
Also bist Du dafür, die Modelle im Artikel Atom zu behandeln und aus dem Artikel Atommodell heraus zu nehmen. Damit haben beide Alternativen jeweils zwei Fürsprecher...-<(kmk)>- 01:31, 14. Sep. 2009 (CEST)Beantworten
ich finde dass im atom das aktuelle modell zentral sein sollte und die historischen modelle und deren geschichte im artikel atommodell abgehandelt werden sollten --- aber: die vorstellungen die zur begriffsbildung atom selbst geführt haben (also keine modelle über die beschaffenheit des atoms sondern modelle die überhaupt erstmal atome in der welt postulieren) müssen in den atom artikel in die geschichtssektion...
kurz: modelle wie das atom ist in atommodell, modelle dass es eine atomos-substanz gibt(unteilbare einheit) im atomartikel
auf diese weise erreicht man glaube ich die geringst mögliche notwendige redundanz zwischen beiden artikeln--77.22.250.139 19:20, 15. Sep. 2009 (CEST)Beantworten
Wer als omA im Artikel Atom liest, will (vermutlich) auch wissen, "was denn nun" ein Atom "ist". Wir alle haben doch beim Gebrauch des Begriffs Atom ein bestimmtes Modell als Bild im Kopf - wir verwechseln das allerdings nicht mit der Wirklichkeit und können unvereinbare Modelle parallel verwenden, weil wir uns daran gewöhnt haben. Ich stimme also Zipferlak zu, die derzeit gebräuchlichen Modelle müssen in den Artikel Atom. Atommodell sollte imho nicht als redirect enden, sondern eine echte BKL (mit siehe auch zum Atomabschnitt) werden. Kein Einstein 14:34, 16. Sep. 2009 (CEST)Beantworten
Ich stimme der BKL-Lösung zu. -- Ben-Oni 19:42, 23. Okt. 2009 (CEST)Beantworten
Falls am Ende nach Stimmen entschieden werden soll, hier auch meine:
Pro Zipferlak (in Atom mehrere Modelle, der "Rahmen" darf auch größer gewählt werden, jedenfalls Atommodell nur Redir oder BKL)
Rainald62 20:40, 25. Dez. 2009 (CET)Beantworten

Hat sich hier eigentlich noch was getan? --Cepheiden 11:16, 29. Nov. 2009 (CET)Beantworten

Nein, leider. Das Thema steht auf Nummer 2-3 meiner To-do-Liste, kommt also evtl. "zwischen den Jahren" Ende Januar mal dran. Wenn sich jemand anders berufen fühlt - nur zu! Ein Konsens scheint ja so weit gefunden. Kein Einstein 11:43, 29. Nov. 2009 (CET) und 20:24, 9. Jan. 2010 (CET)Beantworten

Bevor ich mich ernsthaft an die Arbeit mache und hier vielleicht einen Irrtum begehe:
Ich sehe als "relativen Konsens" (kein Veto-Argument dagegen wie "Widerspruch gegen lexikalisches Prinzip", "unsystematisch", "Redundanzerzeugung" o.ä.) folgendes Vorgehen:
Im Atom werden Atommodelle bleiben. Aber nicht vollständig, sie werden gewichtet hinsichtlich ihres Beitrages hin zu den aktuellen Modellen bzw. es werden die aufgezeigt, die noch "in Gebrauch" sind. Letztendlich ändert sich hier nichts wesentliches. Unbenommen wäre der Versuch, die Abschnitte Atom#Naturwissenschaftliche_Forschung und Atom#Atommodelle evtl. noch mehr aufeinander zu beziehen - oder die Forschungsgeschichte auszulagern, dann wären die Atommodelle so, wie sie sind gerade gut. Cepheidens Vorschlag, Atommodelle mit "Aufbau" zusammenzuführen, kann ich nicht recht einordnen.
Atommodell wird zu einer BKL, die auf die Hauptartikel verweist und ein "Siehe auch" (oder so) zum entsprechenden Abschnitt in Atom hat.
Wenn ich mich täusche, teilt mir das bitte mit. Grüße, Kein Einstein 19:52, 12. Jan. 2010 (CET)Beantworten

Vorschlag: können wir das vielleicht im nächsten Chat diskutieren: laut Eintrag von <kmk> 14.September scheint es da zwei Alternativen zu geben, die ungefähr gleich stark vertreten sind. Mir sind da die beiden Positionen derzeit nicht klar.
Persönliche Meinung: ich glaube schon, dass es zwei Darstellungen des Gebiets geben muss, die sich leicht inhaltlich überschneiden: a) die historische Entwicklung zum aktuellen Atomverständnis (Atom#Naturwissenschaftliche Forschung), b) eine sauberer Auflistung der bekannten Atommodelle (nicht als BKL, sondern jetzige Form eher noch ausgebaut: in welchem Zusammenhang reicht ein evtl. "veraltetes" Modell denn aus?).
Den Redundanz-Baustein sehe ich in bezug auf Atommodell und Atom#Atommodelle, wo es einfacher erscheint, Dinge von Atom nach Atommodell zu übertragen, als andersherum. Aber solange die historische Entwicklung bleibt, könnte ich auch mit einem Einbau von Atommodell in Atom#Atommodelle leben (auch wenn ich es andersherum tun würde). --Dogbert66 09:34, 13. Jan. 2010 (CET)Beantworten
@KeinEinstein: Vielen Dank für Deine gute Zusammenfassung der bisherigen Diskussion. Bitte gib mir einen kurzen Hinweis, wenn Du Dir bei der Umsetzung meine Hilfe wünschst.
@Dogbert: Diejenigen Atommodelle, die für bestimmte Zwecke ausreichen und daher noch heute verwendet werden, werden in Atom abgehandelt, außerdem haben sie jeweils einen eigenen Artikel. Atommodelle, die nur wissenschaftshistorische Bedeutung haben, werden ebenfalls in Atom (bei der Beschreibung der Forschungsgeschichte) diskutiert. Atommodell wird zu einer BKL, wie von KeinEinstein dargelegt.
--Zipferlak 09:49, 13. Jan. 2010 (CET)Beantworten

(Chronologische Reihenfolge wieder hergestellt, nachdem ich mich (wohl wegen BK) versehentlich vor Zipferlak gequetscht hatte. K.E.)

@Dogbert: Deinen Einwand, es ist einfacher „Dinge von Atom nach Atommodell zu übertragen, als andersherum“ kann ich aus zwei Gründen nicht teilen: Erstens (mit Zipferlak) hinsichtlich der Bedeutung der Modelle für unser (gegenwärtiges) Bild vom Atom und zweitens, da gemäß meiner Skizze oben praktisch nichts in Atom hinzukommen wird. Kein Einstein 09:52, 13. Jan. 2010 (CET)Beantworten
@alle: Na, dann ist ja gut, dass ich gefragt habe...
Ich sehe Cepheiden und Belsazar, die den Artikel Atommodelle ausbauen wollen. Wenn ich ihn recht verstehe, auch puerk (77.22.250.139). Und jetzt auch Dogbert66.
Michael Lenz und Zipferlak wollen die Atommodelle im Atom haben. Kein Einstein, Ben-Oni und Rainald62 ebenso (und konkretisieren das Schicksal von Atommodell als BKS).
-<(kmk)>- hat sich noch nicht positioniert.
Ein Fall für den Chat? Tatsächlich?? Kein Einstein 09:52, 13. Jan. 2010 (CET)Beantworten

Artikellücken Quantenoptik

Mir fällt gerade auf, dass das Artikelgerüst in der experimentellen Quantenoptik noch etwas lückenhaft ist. Zwar gibt es den Artikel Magnetooptische Falle, wobei dort bereits jeder hinweis auf das Sisiphoskühlen fehlt. Andere Fallentypen, wie die Dipolfalle, Gradientenfalle, oder die Atomfontäne fehlen jedoch. Ebenso fehlen die diversen Kühlungstechniken von der Optischen Melasse, über Seitenbandkühlen, Ramankühlen und Verdunstungskühlen bis zum Sympathetischen Kühlen. Die Begriffe Dunkelzustand, Wavemeter und Atomlithographie, Atominterferometer sind ebenfalls noch Rotlinks.---<(kmk)>- 03:13, 11. Nov. 2009 (CET)Beantworten

Da geht es aber dem Hauptartikel Quantenoptik nicht deutlich besser! Ich verschiebe mal den Text aus "Unerledigt 2008" hierher:
Angesichts der Bedeutung der jüngsten quantenoptischen Experimente für die Grundlagen der Physik (und inzwischen auch für die Industrie) finde ich den Artikel bisher recht dünn. --7Pinguine 17:28, 6. Mai 2008 (CEST)
In der Tat. Von MOT über den Frequenzkamm, bis BEC und Atominterferometrie fehlen ausgerechnet die Highlights, die diese Fachrichtung seit etwa 20 Jahren interessant machen -- Keine Andeutung dazu, dass es in den letzten Jahren für quantenoptische Themen einige Nobelpreise gab. Zudem ist der erste Satz schlicht falsch. Quantenoptik ist mitnichten ein Untergebiet der Optik.---<(kmk)>- 06:01, 16. Mai 2008 (CEST)
Unter anderem den Satz "Quantenoptik ist kein Untergebiet der Optik" erklärt der Artikel erst mal nicht. Bevor sich jemand an die Artikel in diesem Gebiet macht, wäre es nett erst mal den Hauptartikel zu schreiben. --Dogbert66 21:25, 20. Dez. 2009 (CET)Beantworten
Habe gerade festgestellt: bei den Unerledigt 2008 gab es vor Weihnachten ZWEI Diskussionen zur Quantenoptik. Hier sind die Beiträge vom Teil 2:
hier steht schon lange (Mai 2008) ein QS-Baustein, anscheinend aber nie eingetragen. Artikel mager, mehr Linkliste als alles andere. Cholo Aleman 10:10, 8. Dez. 2008 (CET)
Falsch: Portal:Physik/Qualitätssicherung/Unerledigt/2008#Quantenoptik --Leyo 11:36, 8. Dez. 2008 (CET)

Auch Falsch: Dann ist der Baustein falsch drin - diese Erwähnung war auch nicht von dem Kollegen, der den QS-Baustein eingetragen hat. Bitte korrekt erledigen, ärgerliche Diskussion. Cholo Aleman 11:54, 8. Dez. 2008 (CET) Ja, das frustrierende an der QS hier ist, dass man gar nicht weiß, wo man anfangen soll... Die Themen im Bereich QO habe ich zum großen Teil unter Beobachtung, aber bevor sich da substantiell etwas ändert, ist erst mal der Komplex Lasertechnik dran. Wie soll man verfahren? Baustein drin lassen oder durch so eine Art temporäre-Kapitulation-Baustein ersetzen, wenn sich 6 Monate lang nichts getan hat? -- 7Pinguine Treffpunkt WWNI 16:03, 8. Dez. 2008 (CET) Beim Baustein hätte „|Unerledigt=2008“ ergänzt werden müssen, damit die Verlinkung wieder gestimmt hätte. --Leyo 16:32, 8. Dez. 2008 (CET))

Hier ist jedenfalls eher ein wenig Überarbeitung nötig - ohne die Ansprüche allzu hoch zu schrauben, verfeinert werden kann immer - als bei Laser, wo mir der QS Baustein nicht so recht einleuchtet (habe den Artikel allerdings auch nur überflogen), da sollte man eher auslagern. Was suchen da übrigens die biophotonen?--Claude J 16:50, 8. Dez. 2008 (CET))
Zum Laser: Der QS-Baustein ist drin seit ich den Artikel das erste mal in der WP aufgerufen habe :-( Auslagerungen dort wird es geben, ganz richtig... Das Biophoton hat bei Quantenoptik absolut gar nichts verloren, ich hatte das oberflächlich als Biophotonik gelesen, aber noch ine angeclickt. Den Link habe ich schon mal korrigiert, *schauder*. -- 7Pinguine Treffpunkt WWNI 21:35, 8. Dez. 2008 (CET)

Kann eigentlich Quantenelektronik nicht zu einem Redirect auf Quantenoptik gemacht werden?--Claude J 10:52, 11. Dez. 2008 (CET))

So leicht ist es leider nicht. Der Begriff hat es wohl Mitte des letrzten Jahrhunderts nicht ganz geschafft, zur Fachrichtung zu werden. Die damit gemeinten Inhalte sind in der modernen Festkörperphysik und in der Quantenoptik aufgegangen.---<(kmk)>- 04:39, 7. Mai 2009 (CEST)

Die Meldung ist weiterhin unverändert gültig (denn im Grunde ist der Artikel unverändert...) Kein Einstein 23:00, 8. Jun. 2009 (CEST))

Das ist also eine größere Baustelle (aber auch nur eine!). --Dogbert66 11:31, 4. Jan. 2010 (CET)Beantworten

Reiner Zustand

Beim Durchforsten der Liste mathematischer Artikel ohne Quellenangabe habe ich diesen Artikel gefunden. Der Artikel besteht aus zwei Sätzen, welche ich nicht verstehe. Ich vermute diesen kann man ausbauen. Insbesondere fehlen aber Literaturangaben. --Christian1985 01:16, 19. Nov. 2009 (CET)Beantworten

Die beiden Sätze sind richtig und gehören zu den Grunddefinitionen der Quantenmechanik. Als Literaturangabe mag jedes einführende Lehrbuch der Quantenmechanik herhalten.---<(kmk)>- 04:52, 19. Nov. 2009 (CET)Beantworten
Ist wohl wahr. Ich habe aber mal ein bißchen mehr Prosa eingefügt.--Heiko Schmitz 11:02, 31. Dez. 2009 (CET)Beantworten
Die Ergänzungen sind Verbesserungen. Allerdings bin ich der Meinung, dass die Artikelstruktur zu den Themen Zustand (Quantenmechanik), reiner Zustand und "gemischter Zustand" insgesamt nicht optimal ist. IMHO sollten diese Themen im Zusammenhang beschrieben werden. Mein Vorschlag: 1.) Überführung des Inhalts aus "reiner Zustand" in den Artikel Zustand (Quantenmechanik), 2.) "reiner Zustand" wird ein redirect auf den quantenmechanischen Zustand, und 3.) Ergänzung des Artikels "Zustand (Quantenmechanik)" um die Themen "gemischter Zustand" bzw. "Dichtematrix". Meinungen?-- Belsazar 10:10, 1. Jan. 2010 (CET)Beantworten
Pro Rainald62 21:05, 1. Jan. 2010 (CET)Beantworten
Prinzipiell auch Zustimmung zu Belsazar. Allerdings halte ich den derzeitigen Artikel Reiner Zustand für so fragwürdig, dass ich 1.) nicht als Überführung, sondern Neuformulierung bezeichnen würde. Meine Kritik trifft insbesonders die falsche Formel zur Dichtematrix, weshalb ich bei 3.) auch etwas sorgfältigeren Handlungsbedarf sehe als eine Überführung. --Dogbert66 12:38, 10. Jan. 2010 (CET)Beantworten
Bitte gegenlesen! Die Arbeit zu diesem Abschnitt ist meiner Meinung nach erledigt. Ich bitte aber darum, dass jemand anderes den Artikel nochmal überprüft. Bitte füge Kommentare unter diesem Baustein ein. Wenn Du auch meinst, dass der Punkt abgeschlossen ist, setze bitte den erledigt-Baustein zur Archivierung dieser Diskussion. (Anmerkung: Folgende Änderungen waren gehören zu diesem Umfeld: 1.) Reiner Zustand jetzt eine Redirect auf Zustand (Quantenmechanik). 2.) Zustand (Quantenmechanik) hat sowohl den alten Einleitungsparagraphen, als auch Belsazars Übersetzung aus der en-Wiki und eignet sich in dieser Form als Redirect-Ziel, ist aber ab dem dritten Absatz etwas oma-unfreundlich. 3.) in der BKL Zustand wurde auch den klassischen Zustand ergänzt. 4.) Den Text zu Dichteoperator habe ich komplett überarbeitet, dabei einen Abschnitt "Ensembles" sauber FGDL-konform nach Ensemble (Physik) übertragen (insbesondere letzterer Artikel sollte jetzt bitte nochmal überflogen werden!)) ----Dogbert66 16:42, 10. Jan. 2010 (CET)Beantworten

Auf Diskussion:Zustand_(Quantenmechanik)#Reiner_Zustand_.E2.89.A0_Eigenzustand hat mich Belsazar darauf hingewiesen, dass seine Quelle ein Buch über Quantum entanglement ist. Ich glaube, das spielt bei etlichen Formulierungen eine Rolle und erklärt vermutlich auch einiges über den Zustand von Reiner Zustand von heute morgen. Gerne dürfen meine genannten Korrekturen auch nochmal unter diesem Gesichtspunkt überprüft werden. (Meine Standard-Quellen sind Shankar, sowie Sakurai) --Dogbert66 22:10, 10. Jan. 2010 (CET)Beantworten

Dogbert66 und ich sind uns in einem Punkt nicht einig: Dogbert66 sagt, dass ein Überlagerungszustand (z.B. die Überlagerung der Energieeigenzustände eines harmonischen Oszillators) kein reiner Zustand ist, ich behaupte das Gegenteil. Könnte hier vielleicht noch jemand mit solidem QM-Hintergrund eine 3. Meinung einbringen?-- Belsazar 20:59, 11. Jan. 2010 (CET)Beantworten
Was meinst du denn mit "Überlagerungszustand"? Wenn du damit eine Linearkombination zweier Energieeigenzustände meinst, z.B. den Zustand mit zwei (reinen ;) Eigenzuständen zu unterschiedlichen Energien, dann ist das natürlich ein reiner Zustand.--Timo 22:19, 11. Jan. 2010 (CET)Beantworten
Ja genau, dies ist gemeint (wobei bei einem System mit höherdimensionalem Zustandsraum natürlich auch mehr als zwei Terme möglich sein können)-.-- Belsazar 22:37, 11. Jan. 2010 (CET)Beantworten

Ich beginne zu verstehen: der Begriff Reiner Zustand stammt nicht aus der Quantenmechanik, sondern aus der Quantenstatistik. Ich habe den Artikel Reiner Zustand erst mal vom Redirekt wieder auf die Version von Heikoschmitz zurückgesetzt. In der Einleitung von Zustand (Quantenmechanik) ist nun aber klar zu trennen, ab wo von Quantenstatistik geredet wird - der Artikel heißt Zustand (Quantenmechanik) und nicht Zustand (Quantenstatistik). Eine entsprechende klare Kennzeichnung fehlt auch bei der Dichtematrix. --Dogbert66 23:18, 11. Jan. 2010 (CET)Beantworten

Gefällt es Euch so besser? Ein Vorschlag wäre noch, die Paragraphen 2-4 der Einleitung von Zustand (Quantenmechanik) in einen eigenen Abschnitt zu packen, der dann "Zustände in der Quantenstatistik" heißt. --Dogbert66 23:34, 11. Jan. 2010 (CET)Beantworten
Habe mein Pro zurückgenommen. Falls die klaren Worte von Heikoschmitz in Reiner Zustand zutreffen, dann sollte dazu in Zustand (Quantenmechanik) bloß stehen, dass das mit Superposition nichts zu tun hat, und auf Quantenstatistik verwiesen werden. – Rainald62 00:29, 12. Jan. 2010 (CET)Beantworten
So besser? Und damit kann das auch meinetwegen ein Redirect von Gemischter Zustand werden. --Dogbert66 00:52, 12. Jan. 2010 (CET)Beantworten
Der mittlere der drei nach unten verschobenen Absätze gehört nicht zu Quantenstatistik, sondern wieder nach oben. Ich würde die Lemmata Reiner und Gemischter Zustand nach Quantenstatistik weiterleiten. – Rainald62 11:45, 12. Jan. 2010 (CET)Beantworten
Was den mittleren Absatz angeht, so gehört der m.E. inhaltlich genau dorthin, wo er jetzt steht, auch wenn er von der Wahrscheinlichkeit p=1 redet. Was die Weiterleitung nach Quantenstatistik angeht, so bin ich inzwischen leidenschaftslos, halte da aber den momentanen Zustand für ok. In Ermangelung einer Kategorie Quantenstatistik ist auch die Kategorie Quantenmechanik ok. D.h. ich wäre jetzt für "Qs-Box entfernen und hier erledigt setzen". --Dogbert66 15:55, 12. Jan. 2010 (CET)Beantworten

Der Begriff "reiner Zustand" stammt nicht aus der Quantenstatistik, sondern ist ein Grundbegriff aus der Quantenmechanik, der unter anderem in der Quantenstatistik, aber auch in anderen Themenfeldern wie der Quanteninformatik oder der Messtheorie eine wichtige Rolle spielt. Das Konzept des gemischten Zustands wird nicht nur für makroskopische Systeme, sondern bereits für Einteilchensysteme benötigt, wenn die Präparation des Zustands unvollständig ist. Das ganze ist z:b. in den Nolting-Büchern Bd. 5/1 (Grundkurs theor. Physik: Grundlagen Quantenmechanik, Kap. 3.3.4) oder Bd. 6 (statistische Physik, Kap. 2) beschrieben.-- Belsazar 23:15, 13. Jan. 2010 (CET)Beantworten

Phase (Thermodynamik)

Vorbemerkung: Ich habe die Beiträge wieder aus dem Archiv hervorgeholt, da Hansolocg hier Überarbeitung geleistet hat, ich bitte um fachkundige Kommentare... Kein Einstein 22:03, 19. Nov. 2009 (CET)Beantworten

Moin Moin. Der Artikel ist grade in der Kategorie "Unverständlich" aufgetaucht. Siehe dazu auch die Artikel-Diskussionsseite. Könnt Ihr dem abhelfen? --Guandalug 08:54, 8. Jul. 2009 (CEST)Beantworten

Humm. Der Artikel wirft zwei verschieden Bedeutungen von Phase durcheinander. In der Thermodynamik ist die Phase durchaus etwas anders als, die Phasen in einer Emulsion. Sinnvollerweise sollte man den Inhalt in zwei Artikel auftrennen. Mir ist allerdings etwas unklar, wie man den Artikel zur Milch-Phase nennen könnte. Phase (Gemisch)?---<(kmk)>- 01:01, 10. Aug. 2009 (CEST)Beantworten
Wieso ein eigener Artikel? Milch besteht aus zwei Phasen, von denen eine zwar diskontinuierlich ist, aber sowohl mit der anderen als auch mit sich selbst im Gleichgewicht ist. In der Einleitung steht übrigens, daß Phasen homogen sein müssen, aber z.B. ein Temperatur- oder Konzentrationsgradient kann ja durchaus verhanden sein. Zumindest für Chemiker. Verboten sind ja nur sprunghafte Änderungen.
Btw.: Der Artikel Aggregatzustand erzählt so einiges, was eher bei Phase stehen sollte, und was ist eigentlich genau der Unterschied? -- Maxus96 00:15, 15. Aug. 2009 (CEST)Beantworten
Phase ist der allgemeinere thermodynamische Begriff. Zu einem Aggregatzustand kann es unterschiedliche Phasen geben. Eis kann zum Beispiel 18 je nach Druck und Temperatur verschiedene Phasen annehmen, die allesamt fest sind. Unter Kristallographen werden die Phasen auch Modifikationen genannt. Bei der inhaltlichen Redundanz zwischen Aggregatzustand und Phase stimme ich Dir zu. Der Abschnitt "Phasendiagramm" ist bei den Aggregatzuständen nicht wirklich gut aufgehoben. Es ist schließlich kein Aggregatzustandsdiagramm...---<(kmk)>- 00:50, 16. Aug. 2009 (CEST)Beantworten

Der QS-Baustein ist immer noch drin, aber die ehemals angemeckerten Unverständlichkeiten sind 'raus. Ich finde den Artikel jetzt von der Verständlichkeit völlig in Ordnung. Seid Ihr fertig, kann die QS-Vorlage wieder 'raus? Henning |-|_,_/ 00:45, 1. Nov. 2009 (CET)Beantworten

Ich habe mich der Sache einmal ein wenig angenommen. Vorarbeit dahingehend war ja da (Absatz Schwierigkeit des Begriffs vor allem). Ich habe etwas die Doppeldeutigkeit Phase/Aggregatzustand herausgenommen, die Beispiele etwas anschaulicher ausgebaut und hoffe, dass jetzt auch ein Laie das Ganze nachvollziehen kann. Finde die ersten Abschnitte dann jetzt soweit eindeutig und der letzte erklärt warum eine Phase nun mal homogen ist, und mal nicht, je nachdem wie man draufguckt. Ich denke der QS-Baustein kann dann wirklich raus (war vorher auch schon verständlich, aber noch inkonsistent) --Hansolocg 21:53, 19. Nov. 2009 (CET)Beantworten

Leider hat sich an den oben festgestellten Grundproblemen nichts geändert. Vielleicht habe ich mich nicht deutlich genug ausgedrückt: Im aktuellen Zustand stellt der Artikel nicht nur das dar, was in der Thermodynamik mit Phase gemeint ist. In diesem Sinn ist der Inhalt falsch. Nicht jede Fraktion eines Gemischs ist eine Phase im thermodynamischen Sinn. Und nur diese Bedeutung sollte hier beschrieben werden. Die Rosinen im Müsli sind genauso wenig eine thermodynamische Phase, wie das Fett in der Milch. Dazu fehlt es einfach an der Möglichkeit eines Phasenübergangs. Das heißt nicht, dass dieser Anteil nicht "Phase" genannt wird. Nur ist das dann ein Ausdruck aus der Technik, oder der Materialwissenschaft, nicht der Thermodynamik. Bitte das QS-Schild erst dann rausnehmen, wenn diese Problematik gelöst ist.---<(kmk)>- 12:16, 20. Nov. 2009 (CET)Beantworten

Die englische WP hat auch für beide Bedeutungsaspekte nur einen Artikel . Umbenennen in Phase (Materie), dann passt der Inhalt zum Lemma. --Zipferlak 21:47, 20. Nov. 2009 (CET)Beantworten
Ich denke, das dein Bild von einer Phase nicht ganz vollständig ist. In einem Mischungsdiagramm gibt es auch verschiedene Phasen, das sind nunmal mehrphasige Systeme, somit auch die Milch wenn man so will. Wenn ich da Ethanol reinkipp, kann ich da vermutlich auch 'nen Verteilungskoeffizienten für angeben zwischen Fetttröpfchen und wässriger Phase. Verteilungskoeffizienten haben was mit chemischem Potential zu tun, somit Thermodynamik. Nur mit Aggregatzuständen + Feststoffmodifikationen ist der Begriff nunmal nicht abgedeckt. Zumal die Begriffe da nunmal sehr überlappend verwendet werden. Aber die verschiedenen Modifikationen z.B. von Schwefel sind eben auch keine Phase, sondern eine Modifikation, eine Phase wird's erst, wenn ich auch Substanz in der Modifikation vorliegen hab. Aber ich bastel nochmal kurz dran um das vllt noch besser rauszustellen. --Hansolocg 18:53, 24. Nov. 2009 (CET) Done --Hansolocg 19:45, 24. Nov. 2009 (CET)Beantworten
Nur weil letztlich alles den Gesetzen der Thermodynamik folgt, heißt das noch lange nicht, dass auch alles Thema der Fachrichtung Thermodynamik ist. Eine schlichte Mischung von unterschiedlichen Bestandteilen ist etwas anderes als ein Gemisch, dessen Anteile nach den Regeln der Thermodynamik ineinander übergehen können. Anders ausgedrückt: Für Rosinen, Nüsse und Haferflocken gibt es kein Phasendiagramm. Diese beiden Bedeutungen sollten nicht in einem Artikel unter der gemeinsamen Überschrift "Thermodynamik" miteinander vermengt werden.---<(kmk)>- 23:14, 13. Dez. 2009 (CET)Beantworten
Das liegt aber IMHO nur daran, das Rosinen, Nüsse und Haferflocken nur in sehr geringem Maße der thermischen Bewegung unterliegen und die Elektrostatischen und Dispersionswechselwirkungen auf dieser Größenskala extrem klein sind-->kein Widerspruch. Ab welcher Größe z.B. eine Mizelle in der Milch als eigene Phase angesehen wird ist wohl Interpretationssache und die Anwendung der Gibbs'schen Phasenregel auf komplizierte Systeme wie sie z.B. in der Polymerchemie/-Physik auftauchen ist AFAIK Gegenstand aktueller Forschung. Es gibt genau eine Definition von Phase und der erste Satz trifft diese Genau.--Zivilverteidigung 20:37, 10. Jan. 2010 (CET)Beantworten
Danke mal für die Rückendeckung ;). Ich habe mir nochmal Gedanken dazu gemacht, wo für kmk hier der Widerspruch auftritt. Bloss weil es bei Rosine und Müsli etc. keinen Sinn macht, diese als Phase (bzw. jede einzelne Zellorganelle oder dergleichen) zu bezeichnen, heißt das nicht, dass es falsch ist (alles eine Frage der Größenordnungen). Aber, und ich habe es versucht so knapp und unverwirrend im Artikel zu schreiben: Phase != Modifikation und Phase != Aggregatzustand. Es ist mehr eine Terminologie, um eben Bereiche voneinander zu unterscheiden, die der Definition gerecht werden. Bei einem Phasenübergang geht Materie von einer Phase in eine andere, die Phase selbst bleibt unberührt ... bis sie verschwindet zumindest. Man kann also thermodynamische Größen einer Phase zuordnen, um diese zu beschreiben, die Phase selbst ist aber lediglich ein Konstrukt, um etwas einzugrenzen. Halte es von daher mittlerweile auch für sinnvoll, das ganze auf Phase(Materie) zu ändern. --Hansolocg 16:37, 11. Jan. 2010 (CET)Beantworten

Temperatur

Kopie meiner Bemerkung in der Diskussion zum Artikel:

"Die Temperatur ist ein Maß für die Heftigkeit der Bewegung (...)"
Tut mir leid, aber diese Formulierung in der Einleitung geht gar nicht. "Heftigkeit" ist kein vernünftig physikalsich definierter Begriff. Mit ihm kann daher keine belastbare Aussage getroffen werden, was Temperatur ist. Leider war der vorher an dieser Stelle stehende Satz mit der "mittleren kinetischen Energie pro Bewegungsform" ebenfalls nicht so toll. Die Temperatur eines Eiswürfels ändert sich nicht durch Beschleunigung. Jedoch ändert sich seine mittlere kinetische Energie. Das ist ein Punkt, an dem auf Schulniveau häufig Missverständnisse auftauchen. Deswegen sollten wir an dieser Stelle peinlich korrekt formulieren. Ich meditiere über eine wassedichte Alternative.---<(kmk)>- 02:03, 26. Nov. 2009 (CET)Beantworten

Meine Meditation war erstmal erfolglos. Habt Ihr vielleicht Vorschläge? Welche die gleichzeitig physikalisch belastbar und halbwegs OMAtauglich sind?---<(kmk)>- 02:08, 26. Nov. 2009 (CET)Beantworten

"Die Temperatur ist ein Mass für die Energieverteilung."--Timo 21:43, 27. Nov. 2009 (CET)Beantworten
"Temperatur ist ein Maß für die mittlere kinetische Energie der Teilchen eines stillstehenden Körpers"
oder
"Temperatur ist ein Maß für die mittlere kinetische Energie der ungeordneten Bewegung der Teilchen eines Körpers"
Grundsätzlich kann man Temperatur nur über die kinetische Energie der Teilchen oder eventuell über die abgegebene Strahlung eines Körpers definieren (Strahlung wird glaube ich bei Schwarzen Löchern als Kriterium genommen).
--Gaussianer 21:08, 29. Nov. 2009 (CET)Beantworten
Es ist durchaus üblich, Temperaturen für Systeme ohne kinetische Energie anzugeben (z.B. das Ising-Modell). Im Boltzmann-Faktor exp[-E/kT] wird auch die Gesamtenergie und nicht nur die kinetische mitgezählt. --Timo 22:55, 29. Nov. 2009 (CET)Beantworten
kann man nicht die mittlere kinetische energie für den mitbewegten beobachter nehmen? das löst doch schon die probleme die du im ersten abschnitt angesprochen hast--perk bekannt als 77.22.250.139 20:29, 30. Dez. 2009 (CET)Beantworten

Es gibt übrigens eine schon recht lange Diskussion auf der entsprechenden Seite: hier. Wir sollten nicht auf zwei Seiten gleichzeitig diskutieren, ich schlage eine Konzentration auf die Disk-Seite vor. Kein Einstein 20:41, 30. Dez. 2009 (CET)Beantworten

Kategorie:Frequenz

Bin ich da übersensibel oder teilt jemand meine Meinung, dass diese Kategorie, insbesonder bei der derzeitigen Befüllung, sowohl wirr als auch entbehrlich ist? --Pjacobi 14:41, 1. Dez. 2009 (CET)Beantworten

MHO: übersensibel. --PeterFrankfurt 03:19, 2. Dez. 2009 (CET)Beantworten
Reduziert man die Kategorie auf diejenigen Artikel, die tatsächlich einzelne Frequenzbänder oder Frequenzen beschreiben, finde ich sie sinnvoll. Alle anderen Artikel sind in der passenden Wellen- bzw. Schwingungskategorie besser aufgehoben. --Zipferlak 03:27, 2. Dez. 2009 (CET)Beantworten
Ein Artikel kann grundsätzlich mehreren Kategorien zugeordnet werden. Insoweit stellt sich die Frage des alternativen Oder nicht, es ist also egal, ob ein konkreter Artikel "woanders besser aufgehoben" wäre. Eine sinnvolle Frage könnte nur darin bestehen, ob ein Artikel so wenig zum Thema Frequenz passt, dass seine Erwähnung wegen der Verschlechterung der Übersichtlichkeit zum Nachteil wird. Man kann auch von einer Kategorie keine strenge inhaltliche "Gliederung" erwarten. Es ist also normal, dass ein Zusammenhang zwischen irgendwelchen willkürlich verglichenen, nebeneinander stehenden Artikeln wirr erscheinen muss. -- wefo 04:59, 2. Dez. 2009 (CET)Beantworten

Zustimmung zu Zipferlak und Widerspruch zu Wefo: Der Gebrauchswert eines Kategoriensystems lebt von der Trennschärfe. In einer Kategorie sollte daher nur das eingetragen, was direkt unter den jeweiligen Oberbegriff fällt. Sie sollte nicht sollte nicht mit Lemmata gefüllt werden, die von weitem mit dem jeweiligen Thema zu tun haben. Anders ausgedrückt: Eine Kategorie ist kein Themenring. Im speziellen Fall haben Begriffe wie Erzwungene Schwingung oder Naturterz nur im weiteren Sinn mit dem Thema Frequenzen zu tun. "Frequenz" ist keine Fachrichtung, sondern ein physikalsicher Begriff. In der Kat sollten daher mnur Lemmata eingetragen werden, die tatsächlich eine Frequenz bezeichnen.---<(kmk)>- 18:25, 2. Dez. 2009 (CET)Beantworten

Ok, nur Lemmata, die wirklich eine Frequenz bezeichnen. Da konnte ich es mir nicht verkneifen, diese Kategorie noch bei Plasmaresonanz und Plasmaoszillation (keine Redundanz! Abgrenzung im Text dort) einzutragen. Da steht die Frequenz zwar nicht im Lemma, aber es kommt in beiden Fällen als Hauptergebnis eine raus. - Hier tritt wieder zutage, dass ich dieses Kategoriensystem für extrem unhandlich und unübersichtlich halte: Bis gestern wusste ich nichts von der Existenz dieser Kategorie und dass man sie schon lange bei den genannten Lemmata hätte ergänzen sollen. --PeterFrankfurt 02:21, 3. Dez. 2009 (CET)Beantworten

Hallo Pjacobi, ich habe etwas aufgeräumt. Ist es so für Dich ok ? Gruß, Zipferlak 22:35, 3. Dez. 2009 (CET) PS: "A ist in Kategorie B" sollte IMO entweder "A ist ein B" oder "A ist Teil von B" ausdrücken. "A hat etwas mit B zu tun" oder "B spielt für A eine wichtige Rolle" ist mir für eine Kategorieeinordnung zu wenig.Beantworten

Außerden Kategorien, die tatsächlich ein is-a abbilden, gibt es durchaus einen Platz für schlagwortartige Erschließung (wobei es schön wäre, wenn es deutliche Unterscheidung gäbe). Nur müssen die Schlagworte tatsächlich nützlich. Eine Interpretation als Schlagwort wäre im Falle der Kategorie Frequenz sogar sinnvoller als eine is-a Kategorie, da die Eigenschaft von der Dimension Frequenz zu sein nicht gerade artikeldefinierende Qualität hat. Wir hatten die Diskussion schon bei Energie und Kategorie:Länge und Kategorie:Masse sind auch 2005 bereits gelöscht worden. --Pjacobi 17:44, 6. Dez. 2009 (CET)Beantworten
Sorry, ich verstehe nur Bahnhof. --Zipferlak 17:58, 6. Dez. 2009 (CET)Beantworten

Fluenz, Fluss (Physik) und Teilchenfluss

Artikel aus der allg. QS, dort mit dem Wunsch nach WP:OMA-Test und Wikifizierung und Quellen --Crazy1880 07:22, 3. Dez. 2009 (CET)Beantworten

Das sieht mir nach einem (veralteten?) Synonym zu Fluss (Physik) aus. Eingeschränkt auf Teilchen würde ich Teilchenfluss sagen (ouups, ein roter Link...). Weiter oben hat jemand aus dem Physikwörterbuch von Westphal zitiert, dass vor 60 Jahren erschien. Vielleicht taugt das al Quelle. Der Artikel Fluss (Physik) ist übrigens auch ein Kandidat für die QS. Er lässt halb offen, ob es sich bei "Fluss" und "Strom" um Synonyme handelt. Außerdem knausert er mit anschaulichen, OMAtauglichen Beschreibungen. Insgesamt ist es mehr eine Formelsammlung als ein Artikel.---<(kmk)>- 11:40, 3. Dez. 2009 (CET)Beantworten
Für Fluenz ist die QS aus meiner Sicht abgeschlossen. Für die anderen beiden Lemmata sehe ich keinen akuten Handlungsbedarf. @Kai-Martin: Fluenz ist Teilchenzahl pro Flächeneinheit, Fluss ist Teilchenzahl pro Zeiteinheit. --Zipferlak 21:51, 3. Dez. 2009 (CET)Beantworten
Oh, da lag ich mit der Synonym-Vermutung ja deutlich daneben. Die richtige Bedeutung stand auch schon vorher im Artikel. Anscheinend war ich mit meinen Gedanken woanders. Ein bis zwei Sätze, die die Bedeutung in natürlichen Sätzen wiedergeben, wären sicher nicht schlecht, damit auch so oberflächliche Leser wie ich in die richtige Richtung gelenkt werden. Die aktuelle Formulierung im zweiten Satz finde ich noch nicht so überzeugend. Man fragt sich unwillkürlich, was denn die "bestimmte Fläche" genau sein soll. Das "bestimmt" soll sich auf einen bestimmten Fleck beziehen. Es könnte aber rein sprachlich auch einen bestimmten Flächeninhalt meinen. Was spricht gegen ein "pro Flächeneinheit" zusammen mit einem konkreten Beispiel? Als Dimension würde ich nicht "1/Fläche" sagen, sondern "Teilchenzahl/Fläche". Zahlen und Winkel haben zwar keine Einheit, aber eine Dimension. Insgesamt fehlt auch noch die schicke Infobox für physikalische Größen.---<(kmk)>- 11:38, 4. Dez. 2009 (CET)Beantworten
Ich habe die „bestimmte Fläche“ als eine beliebig im Raum aufgespannte Fläche mit Umgrenzung interpretiert und empfand deshalb den Satz als problematisch, weil die Fläche ja nicht die kleinste von der Umgrenzung aufgespannte Fläche sein muss. Ich frage mich sogar, ob es nicht sinnvoll sein könnte, von einer Ebene zu sprechen. -- wefo 16:39, 4. Dez. 2009 (CET)Beantworten
Ich verstehe das Problem noch nicht. Im Falle des Castor-Behälters ist die "bestimmte Fläche" beispielsweise die nach innen gewandte Oberfläche der Behälterwand. --Zipferlak 17:03, 4. Dez. 2009 (CET)Beantworten
Ich meinte die Mehrdeutigkeit von "bestimmte Fläche". Das könnte sich auch auf eine Fläche mit einem bestimmten, sich aus dem Zusammenhang ergebenden Flächeninhalt beziehen. Das ist nicht der Fall. Denn durch den Bezug auf eine Flächeneinheit wird der Flächeninhalt der betrachteten Fläche heraus normiert. An einem analogen Beispiel zum Volumen wird es vielleicht klarer: Die lokale Dichte gibt nicht das Gewicht eines bestimmten Volumens an einer bestimmten Stelle in einem Körper an. Sondern sie gibt das Gewicht an, das ein Einheitsvolumen mit gleicher Zusammensetzung wie eine bestimmte Stelle im Körper hätte. Jetzt klarer?---<(kmk)>- 00:12, 7. Dez. 2009 (CET)Beantworten
Es ist aber möglicherweise ein Unterschied, ob Du die Fluenz nach vorne bzw. hinten oder die zur Seite hin betrachtest. Und es erscheint mir nicht sinnvoll, die Fläche dadurch zu vergrö0ern (und somit die Fluenz zu vermindern) indem die Wände geriffelt werden. -- wefo 22:27, 4. Dez. 2009 (CET)Beantworten
Bei solchen Dichte-Größen betrachtet man immer infinitisimale Flächen, Strecken oder Volumen und normiert deren Wert auf eine Einheitsfläche, Einheitsstrecke, oder Einheitsvolumen. Ein infinitisimales Flächenelement ist nach Definition flach und nicht gewellt. Die Orientierung des Flächenelement ist eine andere Frage. Da können sich senkrecht und waagerecht zum Fluss unterschiedliche Werte ergeben. Besonders klar ist das bei einem gerichteten Neutronenstrahl. Wenn die Fluenz ein radioaktive Maß für die Belastung des bestrahlten Materials sein soll, muss man die Orientierung wählen, die tatsächlich vorliegt. In der Tat werden schräg bestrahlte Stahlflächen weniger schnell durch einen Neutronenstrahl verspröden als senkrechte Prallflächen. Daraus würde ich schließen, dass die Fluenz sich die Orientierung der vorliegenden Fläche einbezieht. Kann das jemand mit einer Quelle belegen (oder widerlegen)?---<(kmk)>- 00:39, 7. Dez. 2009 (CET)Beantworten
Deine Ausführungen beweisen, dass der Artikel Fluenz OmA-tauglich werden muss. Insoweit ist die QS eben keineswegs abgeschlossen, wie noch am Anfang behauptet. -- wefo 01:32, 7. Dez. 2009 (CET)Beantworten

Minkowski-Diagramm

Ich habe im Artikel Minkovski-Diagramm einen Abschnitt entfernt, der einem Nutzer etwas suspekt vorkam. Siehe auch Diskussion:Minkowski-Diagramm#Noch_nicht_perfekt.... Bitte um Korrektur, wenn ich mit meiner Einschätzung völlig daneben liege.---<(kmk)>- 18:08, 6. Dez. 2009 (CET)Beantworten

Dieser Abschnitt kann archiviert werden. -- -- Kein_Einstein 20:30, 15. Jan. 2010 (CET)Beantworten

Fermi-Verteilung

Beim Lemma zur Fermi-Verteilung wird mir die Abgrenzung zur Fermi-Dirac-Statistik nicht ganz klar, bzw. anders gesagt passt das Lemma nicht zu dem Artikelinhalt bzw. dieser nicht zu dem, was man auf Grund der Weiterleitungen erwartet, z.B. wird Fermi-Energie nicht richtig definiert (ist sie Temperaturabhängig?). Nicht das mir die Lösung auf der englischen (und weiteren WPs) besser gefaellt-die Idee, alle Fermi-xxx Begriffe unter Fermi-Verteilung abzuhandeln ist besser als unter Fermi-Energie, aber das sollte aus der Einleitung auch deutlich werden. Der Einleitungssatz ist im Moment so, dass selbst ein Festkörperphysiker erstmal kurz darüber verwirrt ist. OK, meine Argumentation finde ich selbst gerade wirr, aber kurz gesagt finde ich irgendetwas unstimming, weiss aber nicht, was genau. --Prolineserver 10:48, 11. Dez. 2009 (CET)Beantworten

Leider ist mir nicht ganz klar, was Du meinst. Kannst Du bitte beschreiben, wie Du auf das Problem gestoßen bist ? --Zipferlak 17:41, 11. Dez. 2009 (CET)Beantworten
Hab' mal versucht, den Abschnitt "Beschreibung" etwas klarer darzustellen. --Anastasius zwerg 20:07, 11. Dez. 2009 (CET)Beantworten
Bis auf Fermi-Geschwindigkeit zeigen die meisten der Fermi-xxxx (Fermi-) Lemmata als Weiterleitung auf Fermi-Verteilung. Das ist durchaus eine gute Idee, das in einem Abwasch abzuhandeln, da sich andernfalls ein Grossteil des Inhalts ueberschneiden wuerde. Auf den Artikel bin ich ueber Wikipedia:Auskunft#Wie_schnell_fließt_Strom und dann erstmals ueber Fermi-Energie dort gelandet, und dann sagt mir der erste Satz: "Die Fermi-Verteilung folgt aus der Fermi-Dirac-Statistik im wichtigen Spezialfall der Wechselwirkungsfreiheit." Mhh. An diesem Punkt stellten sich mir spontan ein paar mehr oder weniger leicht zu beantwortende Fragen: Was ist jetzt der Unterschied zwischen einer Verteilung und einer Statistik? Wechselwirkungsfreiheit von was, zwischen welchen (Quasi-)teilchen? Wo gibt es in der Fermi-Dirac-Statistik eine Wechselwirkung, die man hier vernachlässigt? Was hat das jetzt mit der Fermi-Energie zu tun?! Der zweite Satz macht das nicht besser: "mit welcher Wahrscheinlichkeit ein Fermion eine Energie E zu gegebener Temperatur T hat". Gleiche Frage wieder: Was ist der Unterschied zur Fermi-Dirac-Statistik? Bis jetzt ist der potentielle Leser, der davon wahrscheinlich noch weniger Ahnung als meine Wenigkeit hat, total verschreckt. Im naechsten Abschnitt dann folgt "offensichtlich" wieder die gleiche Gleichung wie fuer die Fermi-Dirac Statistik, und dann irgendwann kommen die ersten allgemein verständlichen Worte wie Elektron und Metall, allerdings nicht auf das Lemma, sondern auf ein weiteres Schlagwort bezogen. Daher ist nicht ersichtlich ist, das Elektron und Metall auch schon prinzipiell fuer die ersten beiden Sätze gelten, welche imho nichts mehr als ein netter versuch einer an dieser stelle etwas fehlplatzierten, möglichst allgemeingueltigen Formulierung sind. Aber vielleicht sehe ja nur ich das so, daher die Frage hier. --Prolineserver 00:32, 12. Dez. 2009 (CET)Beantworten

Elektrische Suszeptibilität

Entweder bin ich total vernagelt, oder der Leser, mit dem ich seit Tagen in der dortigen Diskussion herumstreite, ist es. Kann da mal eine Fachautorität drüberschauen? --PeterFrankfurt 03:46, 13. Dez. 2009 (CET)Beantworten

Hallo Peter. Laut meinen Erinnerungen an weit zurück liegende EDynamikvorlesungen stellt sich die Frage gar nicht in dem Sinn, wie die IP suggeriert. E und D sind zwei unterschiedliche Eigenschaften desselben elektrischen Felds. Der Zusammenhang zwischen E und D gilt damit selbstverständlich jeweils am selben Ort und unter denselben Randbdingungen. Ich habe eine entsprechende Bemerkung in der Diskussion eingefügt.---<(kmk)>- 22:53, 13. Dez. 2009 (CET)Beantworten
Ah, wie ich sagte: vernagelt. Nach dem Prinzip, warum einfach, wenn es auch kompliziert geht. Danke für die Klärung. --PeterFrankfurt 02:36, 14. Dez. 2009 (CET)Beantworten
"jeweils am selben Ort" – das passt ja zum Edit der IP (äußere). Die IP hat auch da Recht: Was (im Plattenkondensator mit Dielektrikum und Luftspalt) die kontinuierliche Größe ist und deshalb als äußeres Feld bezeichnet werden kann, ist D, nicht E. D heißt nicht umsonst Verschiebungsstromdichte (siehe dort Gl. 7, Ströme sind kontinuierlich). Ob mit dieser Erläuterung das "äußere" wieder rein soll, ist eine andere Frage. Ich fänd's lehrreich. – Rainald62 13:08, 14. Dez. 2009 (CET)Beantworten
MSpenke kritisiert zurecht, daß der Artikel von einem externen E-Feld schreibt, aber in Wirklichkeit ein eingeprägtes E-Feld meint. Meine Erläuterungen befinden sich in den Artikeldiskussionen. --Michael Lenz 04:15, 19. Dez. 2009 (CET)Beantworten

Dieser Abschnitt kann archiviert werden. -- -- Kein_Einstein 20:42, 15. Jan. 2010 (CET)Beantworten

Gammablitz

Der Artikel braucht physikalische Hilfe. Er verliert z.B. kein Wort über das Spektrum dieser Strahlung.
Der Satz Die Erdatmosphäre ist für Gammastrahlen undurchlässig, weswegen man ... ist in dieser Schlichtheit wohl nicht ganz haltbar.
In Zudem werden bodengestützte indirekte Beobachtungsmethoden umgesetzt (wundervoll politikermäßig geschraubter Satz) wird mit umsetzen wohl anwenden gemeint sein. Aber was wird da nun wirklich gemacht? Detektoren mit Ballons oder Raketen in die hohe Atmosphäre gebracht oder was? Grüße, --UvM 13:20, 15. Dez. 2009 (CET)Beantworten

Nee, Detektoren in Ballons oder Raketen sind meistens zur falschen Zeit am falschen Ort (und auch nicht indirekt). Die Primärteilchen erzeugen in der Atmosphäre Schauer, deren Teilchen über viele Generationen noch fast Lichtgeschwindigkeit haben und fast in derselben Richtung fliegen. Was im Endeffekt an sichtbarer Strahlung generiert wird, stammt also aus einer wandernden Ebene, deren Orientierung über Laufzeitdifferenzen zu einem Array von bildgebenden Detektoren am Boden ermittelt wird. Einsatzbereit in klaren Nächten, Erfassungsbereich hunderte km². – Rainald62 18:01, 15. Dez. 2009 (CET)Beantworten

Du weißt offenbar Bescheid. Alsdann:
- Was ist über das Spektrum (der primären Strahlung) bekannt?
- Kommt es nur auf im Endeffekt generierte SICHTBARE Stahlung an? Kann man nicht aus anderen Schauerkomponenten auch etwas schließen?
- Warum ist ein Array von BILDGEBENDEN Detektoren am Boden nötig? Wären die Laufzeitdifferenzen nicht mit einfachen Einzel-Szintillationsdetektoren o.ä. messbar? --UvM 21:17, 15. Dez. 2009 (CET)Beantworten

- die englische wiki meint: As of 2007 there is no theory that has successfully described the spectrum of all gamma-ray bursts (though some theories work for a subset). However, the so-called Band function has been fairly successful at fitting, empirically, the spectra of most gamma-ray bursts:

- die anderen schauerkomponenten reagieren ja immer weiter und kommen nicht zuverlässig am erdboden an (außerdem müsste man dann eine wesentlich größere detektorfläche am boden bereitstellen als mit teleskopen die atmosphäre als detektorvolumen zu nutzen) beispiel nur teleskope: H.E.S.S.
(und auch wenn es um kosmische strahlung geht und der teilchenschauer etwas anderes ist.. zum verständnis ein experiment mit cherenkovlichtmessung aus der atmosphäre und detektoren am boden: Pierre-Auger-Observatorium)
- was gleich die nächste frage beantwortet: szintillationsdetektoren mit laufzeitdifferenzen reichen für die teilchenschauer die in ausreichender menge und charakteristischem muster den boden erreichen... beim auger detektor sucht man allerdings nach teilchen im bereich von einigen dutzend PeV bis zu einigen dutzen EeV, beim H.E.S.S. eher um 3-5 größenordnungen niedriger, ich vermute mal deswegen kommen dort zu wenig schauerteilchen am boden an um sinnvoll ausgewertet zu werden (und von den viel stärkeren effekten der kosmischen strahlung bei höheren energien unterschieden zu werden)--perk bekannt als 77.22.250.139 07:36, 16. Dez. 2009 (CET)Beantworten
Im Prinzip gehen auch Einzeldetektoren, müssten dann aber sehr viele sein und diffus über ein großes Areal verteilt. Bei jedem Standort bräuchte man Stromversorgung, hochgenaue Uhr, Massenspeicher oder schnellen Datenlink. Und 1 m² Gesamt-Detektorfläche aus Einzeldetektoren ist auch nicht billiger als eine solche Teleskopoptik hinreichender Abbildungsqualität (es reichen gepresste Linsen/Spiegel, da deren Oberflächen nur glatt sein müssen, um Streulicht zu vermeiden, nicht auch präzise). – Rainald62 10:01, 16. Dez. 2009 (CET)Beantworten

Eine Menge Informationen, Leute, aber... Verstanden habe ich bisher:
(1) das Spektrum ist kontinuierlich, hat auch keine darauf sitzenden Linien. (Das hinzuschreiben hat zwar immer noch niemand geschafft, aber die Gleichungen oben sehen so aus, was auch immer Alpha, Beta, E0 sein mögen.)
(2) Die Schauer, die von der Erde aus untersucht werden können, sind von anderer Art die von kosmischer Teilchenstrahlung erzeugten. (Oder doch nicht?)
Wenn nun noch jemand angeben könnte, von wo bis wo (in Wellenlängen oder eV) das Spektrum etwa reicht, wo ungefähr sein Maximum liegt, und ob alle Gammablitze bezüglich Spektrum ähnlich sind oder ob es vielleicht in dieser Hinsicht verschiedene "Typen" gibt, -- und wenn er das gleich in den Artikel schriebe -- dann hätten wir tatsächlich eine Verbesserung des Artikels...--UvM 15:11, 31. Dez. 2009 (CET)Beantworten

ja ziemlich kontinuierlich und der schwarzkörperstrahlung nicht unähnlich, dass kleine linien draufsitzen ist unvermeidlich.. garantiert wird bei 511 und 1022 kev kein aalglatter verlauf ein.. oha ich lag fast richtig hier stehen interessante infos zum spektrum.. wenn dir die quelle recht ist würd ichs nach erneutem lesen in den artikel bauen
die kosmische teilchenstrahlung hat mehr energie als die grb-gammastrahlung deswegen sind die teilchenschauer in der atmosphäre etwas anders.. --perk bekannt als 77.22.250.139 07:38, 3. Jan. 2010 (CET)Beantworten

Warum sollte mir die Quelle nicht recht sein? Sie liest sich für mich vernünftig. Du bist anscheinend Fachmann hier, ich nicht. Bitte bau die Information in den Artikel ein. -- Was heißt "ziemlich" kontinuierlich? Gibt es unter- oder oberhalb vom Kontinuum noch E-Gebiete mit Einzellinien, oder was ist gemeint? (Brauchst du nicht mir zu erklären, aber im Artikel sollte es klar und zweifelsfrei stehen.) Gruß --UvM 21:45, 3. Jan. 2010 (CET)Beantworten

Da keiner der Sachkenner sich bereit findet, habe ich mal angefangen, diese physikalische Peinlichkeit von Artikel zu überarbeiten. Und da immer noch niemand fähig gewesen ist, das Spektrum (die verschiedenen beobachteten Spektren??) grob zu beschreiben, habe ich einen noch leeren Abschnitt "Spektrum" eingefügt. Und in den wird nun hoffentlich nicht die prächtige hier oben von Perk zitierte Formel eingefügt, sondern ein paar einfache, omafähige Angaben, wie oben schon angemahnt. (Die Formel stammt offenbar aus "Gamma-ray burst emission mechanisms" in der engl. WP. Aber auch der Autor dort war zu fachidiotisch-betriebsblind, um Zahlenwerte für die Konstanten zu nennen.) -- Übrigens hat der Artikel außer physikalischer auch sprachliche und stilistische Hilfe nötig. Er sollte Sachinformation bieten, statt im Bildzeitungsstil "gewaltig" auf "gigantisch" zu türmen und zu erzählen, was "den Astronomen schon lange Rätsel aufgibt"... Nicht für ungut, Grüße, --UvM 11:17, 17. Jan. 2010 (CET)Beantworten

siehe auch: Tanabe-Sugano-Diagramm, Racah-Parameter

Die beiden Artikel sind kreuzweise assoziativ verlinkt. Den Bezug muss der Leser leider selber rausfinden und da mir das zu starker Tobak ist, bitte ich hier um Auflösung des siehe-auch. Weitere Informationen sind unter Wikipedia:Assoziative Verweise oder auf meiner Seite. --Siehe-auch-Löscher 08:48, 16. Dez. 2009 (CET)Beantworten

Vgl. [1], URV?

Feynman-Parametrisierung

Aus der allg. QS, dort mit dem Wunsch, den Artikel verständlicher zu machen, vllt. könnt ihr helfen --Crazy1880 14:29, 6. Dez. 2009 (CET)Beantworten

Kam so auf die QS-Seite des Portals-Mathematik. Vielleicht ists hier besser aufgehoben? --Christian1985 16:00, 17. Dez. 2009 (CET)Beantworten
Interessante Beziehung (für den Spezialfall A=B unmittelbar einsichtig). Ich vermute mal, dass A und B komplexwertig sein dürfen, dass etwas schiefgeht, wenn die Verbindungslinie durch Null geht, und dass in der physikalischen Anwendung die Realteile positiv sind. Ansonsten finde ich den Artikel akzeptabel. Soll etwa jemand unter #Anwendung ein Beispiel vorrechnen? – Rainald62 21:23, 18. Dez. 2009 (CET)Beantworten
Also ich denke mal, dass der genannte Fall keineswegs das "einfachste Beispiel" für eine Feynman-Parametrisierung ist. Auch fehlt fast (!) völlig die Motivation dafür, warum man den Parameter einfügen sollte. Ein anderes Beispiel mit der zugehörenden Motivation wäre:
1. Man steht vor einem Integral , das man zu lösen versucht (ohne im Bronstein nachzuschlagen).
2. Man stellt fest, dass der Integrand sich einfach als an der Stelle u=1 schreiben lässt. Dabei taucht plötzlich der Parameter u auf, der keine "physikalische Bedeutung" hat, sondern nur zum Lösen des Integrals gut ist.
3. Durch Vertauschen von Integral und Ableitung (ob/wann man das darf, darüber dürfen sich Mathematiker streiten) steht da plötzlich nur noch ein einfaches Integral über die Exponentialfunktion, das zu lösen Schulmathematik ist.
4. Die Ableitung nach u ist durchführbar. Nach Ersetzen von u=1 verschwindet der Parameter 'u' wieder, und das Integral ist gelöst.
Feynman hat solche Tricks häufig eingesetzt, deshalb wird der Parameter u dann auch Feynman-Parameter genannt. Aber richtig: in den meisten Fällen ging es ihm dabei auch um das Lösen von Feynman-Diagrammen.
Das im Artikel genannte Beispiel wird durch die "Anwendung" zwar halbwegs motiviert, aber der Kerngedanke "Einfügen eines Parameters, um ein Integral zu knacken, und den Parameter hinterher wieder rausfallen zu lassen" fehlt völlig. Insbesondere, da hier zwar ein mehrdimensionales Integral auf das Integral über die Radialkomponente reduziert wird, hinterher aber immer noch über u integriert werden muss. Daher ist im Artikel-Beispiel ist nicht unbedingt einleuchtend, wo da die Vereinfachung liegt.
Fazit: der Artikel hat zwar etwas mit Feynman-Parametrisierung zu tun, erklärt aber eigentlich gar nicht, worum es dabei geht.
Ich setz mich am Wochenende mal dran. --Dogbert66 23:54, 18. Dez. 2009 (CET)Beantworten
Im Artikel steht nicht "einfachste Parametrisierung", sondern "einfachste Form", offenbar der angegebenen Identität im Vgl. mit den darunter stehenden Verallgemeinerungen, deren Herleitung übrigens dort zu finden ist (meine Vermutung positiver Realteile zur Vermeidung der Divergenz war falsch, es sind die Imaginärteile).
Welche einfacheren Parametrisierungen Feynman benutzt hat und seinen Namen tragen, wäre interessant, obiger "Kerngedanke" trifft aber wohl nicht nur auf Feynman-Parametrisierungen zu. – Rainald62 14:23, 19. Dez. 2009 (CET)Beantworten

ZEKE-Spektroskopie

Bitte prüfen ob der Artikel so behalt- und ausbaubar ist, ggf. in Photoelektronenspektroskopie einbauen und weiterleiten. Artikel kommt aus der allg. QS. --Crazy1880 07:33, 21. Dez. 2009 (CET)Beantworten

Ja, beim derzeitigen Umfang, lieber in Photoelektronenspektroskopie einbauen und weiterleiten. --Cepheiden 08:34, 21. Dez. 2009 (CET)Beantworten
Oder ausbauen auf einen Umfang wie von EXAFSRainald62 09:39, 21. Dez. 2009 (CET)Beantworten

Kategorie:Wärmekennwert

gefällt mir eigentlich auch nicht - Kennwert sollte für Kannzahlen vorbehalten sein, nicht (da haben wir etwa Kategorie:Kennzahl (Thermodynamik)) - diese kategorie scheint mir eher bautechnisch ausgerichtet, und sollte zwischen (dann ebenfalls material- und bauphysik-relevanten) echten kennzahlen, und allgemeinen Wärmegrößen (im sinne physikalische Größen der Wärmelehre und -physik) unterscheiden, oder aber namentlich verschoben werden - eigentlich auch ein fall für Portal:Mess-, Steuerungs- und Regelungstechnik, aber ich denke, diese seite ist auch auf beobachtung der fachgruppe (maßkundliches) - bei verschiebung wär noch mit Wikipedia:WikiProjekt Planen und Bauen gegenzuspechen (die sprache ist dort etwas weniger streng, aber strenge täte dem thema gut) --W!B: 19:35, 24. Dez. 2009 (CET)Beantworten

Selbstenergie

Selbstenergie gehört aufgeräumt:

Beide gehören dann in einen gemeinsamen Absatz Selbstenergie#Klassischer Fall oder so ähnlich.

Weitere Fragen dazu aus einer alten QS-Diskussion stehen auf der Artikel-Diskussionseite. --Dogbert66 23:20, 30. Dez. 2009 (CET)Beantworten

Viererimpuls, thematische Überschneidung mit Vierervektor

1) Der Viererimpuls ist bereits im Artikel Vierervektor erklärt.

2) Die c=1 Nomenklatur ist zwar elegant, aber gerade bei der Einführung des Viererimpulses fehl am Platz und verwirrend.

Wäre nicht die "Herleitung der Geschwindigkeitsabhängigkeit von Energie und Impuls", hätte ich Viererimpuls und Energie-Impuls-Beziehung schon auf Vierervektor#Viererimpuls umgebogen, dort wird das ganze IMHO besser erklärt. Nur was tun mit der "Herleitung der Geschwindigkeitsabhängigkeit von Energie und Impuls"? Die flog bei Äquivalenz von Masse und Energie raus und landete beim Viererimpuls. Was meint ihr? -- Coronium 20:00, 30. Dez. 2009 (CET)Beantworten

Sieht mir nach einem Artikel von Norbert Dragon aus (nebenbei dezidierter Befürworter von c=1, wir hatten hier schon entsprechende Diskussionen). Ich würde da gar nichts machen, Viererimpuls neben Vierervektor ist als Dynamik-Version (mit Erhaltungssatz) durchaus einen eigenen Artikel Wert.--Claude J 10:19, 31. Dez. 2009 (CET)Beantworten
+1 für behalten. a) Der Begriff ist deutlich wichtiger als jetzt zum Beispiel eine Viererbeschleunigung. b) Die Erhaltung von Energie und Impuls in einer Gleichung formulieren zu können, deutet die Relevanz an (allerdings schreibt der derzeitige Artikel darüber recht wenig!). --Dogbert66 10:39, 31. Dez. 2009 (CET)Beantworten

Hertzscher Dipol

Unvollständig, unverständlich, unbelegt, ungegliedert – Rainald62 03:55, 2. Jan. 2010 (CET)Beantworten

Das sehe ich auch so. Wobei "unbelegt" bei so einem Lehrbuch-Thema das kleinste Problem ist.---<(kmk)>- 02:12, 6. Jan. 2010 (CET)Beantworten

Methode der kleinen Schritte

Hallo Physiker, das stammt aus der allgemeinen QS und wir fühlen uns damit überfordert, seid ihr doch die wahren Experten. Danke. -- nfu-peng Diskuss 13:33, 2. Jan. 2010 (CET)Beantworten

Redirect auf Eulersches Polygonzugverfahren (ist übrigens Mathematik).--Claude J 13:57, 2. Jan. 2010 (CET)Beantworten

Du hast schon Recht, Claude, aber Zielgruppe des Lemmas sind wohl Schüler, die das im Physikunterricht als numerisches Näherungsverfahren kennenlernen, um beispielsweise den Luftwiderstand bei der Anwendung des 2. Newton´schen Gesetzes berücksichtigen zu können. (Heutzutage so etwa 10. Klasse.) Ein eigener Artikel wäre schon gut. Ich erinnere mich an einen thematisch halbwegs passenden Beitrag, den man ggf. umformulieren kann, er stand in dieser Version im Artikel Freier Fall, ist derzeit gestrichen. Ich habe das (ich hoffe, halbwegs lizenzkonform) in den Stub eingebaut und frage den damaligen Autor, Herbertweidener, ob er sich erbarmen will. Ich selbst komme in den nächsten Tagen und Wochen nicht dazu, das gut einzubauen. Kein Einstein 20:55, 2. Jan. 2010 (CET)Beantworten
Mir ist allerdings der Name "Methode der kleinen Schritte" auch vertrauter als Eulersches Polygonzugverfahren.--Claude J 10:56, 3. Jan. 2010 (CET)Beantworten
Ich bezweifle, dass diese Bezeichnung für das Eulersche Verfahren ausserhalb des schulischen Umfelds etabliert ist. Falls das so ist, sollte es im Artikel erwähnt werden. Übrigens gibt es für die Formulierung, wie eine google-Suche zeigt, noch jede Menge weiterer Bedeutungen ausserhalb der Physik.-- Belsazar 15:56, 3. Jan. 2010 (CET)Beantworten
Genau genommen kann ich mich selbst nicht erinnern diese "Methode" jemals mit einem Namen verbunden zu haben (sicherlich eine Bildungslücke). Methode der kleinen Schritte klingt aber einleuchtend.--Claude J 11:37, 4. Jan. 2010 (CET)Beantworten

Ich vermisse im Artikel den Zusammenhang mit der Infinitisimal-Rechung. Außerdem fehlt eine Angabe der Voraussetzungen, unter denen das Verfahren sinnvolle Ergebnisse liefert (Bedingungen an die DGL). Ebenso fehlt eine Abschätzung der Fehler. Ein Verweis auf numerische Verfahren mit adaptierender Schrittweite (z.B. das Runge-Kutta-Verfahren) würde die Sache abrunden.---<(kmk)>- 02:04, 6. Jan. 2010 (CET)Beantworten

Uf-Wert

Aus der allg. QS, bitte mal querlesen und Vollprogramm oder bei U-Wert einbauen, danke --Crazy1880 13:32, 9. Jan. 2010 (CET)Beantworten

Johnsen-Rahbek-Effekt

aus der allgemeinen QS. Scheint was physikalisches zu sein, betrifft wohl aber auch die Elektrotechnik. Sowohl die Namensvariante Johnson-Rabeck-Effekt als auch Johnson-Rahbek-Effekt sind in der literatur zu finden --Julez A. 14:58, 11. Jan. 2010 (CET)Beantworten

Also das derzeitige Lemma ist schon aufgrund der "Deppenleerzeichens" falsch. Bei Google Books überwiegt die Schriebweise Johnsen-Rahbek-Effekt (46 Treffer) gegen über Johnson-Rahbek-Effekt (22 Treffer) und Johnson-Rabeck-Effekt(3 Treffer) und der englische Artikel heißt en:Johnsen–Rahbek effect. Sollte nach Johnsen-Rahbek-Effekt verschoben werden --Cepheiden 15:00, 11. Jan. 2010 (CET)Beantworten
Verschoben nach Johnsen-Rahbek-Effekt. Der Artikel an sich ist aber noch stark überarbeitungsbedürftig. --Cepheiden 16:02, 11. Jan. 2010 (CET)Beantworten

Hier hat wohl jemand den en:Johnsen–Rahbek effect automatisch übersetzen lassen und daraus den deutschen Artikel erzeugt: aus "between a metallic surface and the surface of a semiconducting material." wurde "zwischen einer metallischen Oberfläche und eine um die Hälfte verringerte Oberfläche". Gilt sowas als löschungswürdiger Unfug oder behalten wir das? (nicht signierter Beitrag von Coronium (Diskussion | Beiträge) 14:40, 12. Jan. 2010 (CET)) Beantworten

Nich immer alles Löschen. Lieber kurz und sinnvoll überarbeiten, muss ja nicht gleich eine Kandidatur angestrebt werden. --Cepheiden 15:28, 12. Jan. 2010 (CET)Beantworten
Öhm, lautDictionary Of Physics. Anmol Publications PVT. LTD., ISBN 81-261-1941-1. gibt es wohl sowohl den Johnsen-Rahbek-Effekt als auch den Johnson-Rahbeck-Effekt. Sehr merkwürdig. --Cepheiden 15:34, 12. Jan. 2010 (CET)Beantworten

Mein Schubert, Joachim: Physikalische Effekte (1982) kennt nur den Johnsen-Rahbeck-Effekt (nach dem schwed.-amerikan. Physiker John Bertrand Johnsen (in der wp: John Bertrand Johnson)- das steht im Widerspruch zur derzeitigen Darstellung im Artikel Johnsen-Rahbek-Effekt!). Die Beschreibung entspricht einer Mischung deiner beiden Fundstellen, geht vom Stromdurchgang zwischen Metall und Halbleiter aus, die eine Haftwirkung (durch multiple Kondensatoren sozusagen) bewirkt. Bei Flüssigkeiten heißt das dann Winslow-Effekt. Verwendet wird der Effekt bei Lautsprechern. Ich könnte das in Johnsen-Rahbek-Effekt einbauen - aber sinnvollerweise erst dann, wenn wir durchblicken, ob es nun einer oder zwei Effekte sind... Gruß, Kein Einstein 16:30, 12. Jan. 2010 (CET)Beantworten

nachtrag: Bei Schubert gibt es auch einen Johnson-Effekt, der Äquivalent zum Schrot-Effekt bzw. zum Schottky-Effekt ist. Das kann dann wohl nicht die Auflösung des Rätsels sein (aber welcher Johnson war das nun wieder??). Kein Einstein 16:54, 12. Jan. 2010 (CET)Beantworten
Das war vermutlich John Bertrand Johnson, der sich nach Walter Schottky mit dem Rauschen (Physik) befasst hat. -- Pewa 15:35, 13. Jan. 2010 (CET)Beantworten

Ein Teil der Fehlschreibungen scheint aus der Internationalen Patentklassifikation zu stammen. Dort gibt es unter "H02N 13/00" "Kupplungen oder Haltevorrichtungen mit elektrostatischer Anziehung, z.B. unter Verwendung des Johnson-Rahbek-Effekts". Erstaunlich ist, dass es dort in der Kategorie Magnete auch einen Johnson-Rabeck-Effekt gibt: "H01F 7/08 W" "Besondere Wirkungen: Magnetostriktion, Hall-, Johnson-Rabeck-Effekt"[2]. Das könnte aber ein einfacher Irrtum sein, einen solchen magnetischen Effekt scheint es nicht zu geben. -- Pewa 16:03, 13. Jan. 2010 (CET)Beantworten

Irrtümer in Patentschriften gibts zuhauf, dazu Nebelkerzen, um die Konkurrenz auszubremsen. – Rainald62 18:38, 13. Jan. 2010 (CET)Beantworten
Abgesehen davon ging es hier aber um Fehler in den Referenzdokumenten der Patentämter. -- Pewa 22:00, 13. Jan. 2010 (CET)Beantworten

Ich würde mal sagen, aus unserem QS-Sorgenkind wurde ein Artikel, der nun fast schon an Referenzitis leidet. Als QS-Fall erledigt. Ich würde dann, wenn es keinen Widerspruch gibt, noch etwas von hier auf die Artikeldisk zur Schreibweise kleben, damit die Diskussion nicht in ein paar Monaten wieder neu angestoßen wird. Kein Einstein 19:28, 13. Jan. 2010 (CET)Beantworten

Dieser Abschnitt kann archiviert werden. -- -- Kein_Einstein 19:28, 13. Jan. 2010 (CET)Beantworten

Löschkandidat Kernenergie (Begriffsklärung)

Die Begriffsklärungsseite Kernenergie (Begriffsklärung) ist gerade ein Löschkandidat, als Teil einer von Benutzer:Herbertweidner angestrebten Umstrukturierung des Themengebiets Kerntechnik. Siehe dazu auch die Diskussionen zu Kernenergie und zu Kernkraftwerk.---<(kmk)>- 02:10, 6. Jan. 2010 (CET)Beantworten

Ich finde den BKl-Artikel teils falsch, teils überflüssig, siehe Löschdisk. --UvM 14:10, 17. Jan. 2010 (CET)Beantworten

Lorentz-Transformation und Minkowski-Raum

Zweifelhaftes Lemma und essayistischer Stil, ist da überhaupt irgendein (enzyklopädischer) Mehrwert zu Lorentz-Transformation, Minkowski-Raum und Geschichte der speziellen Relativitätstheorie? -- 92.206.80.16 01:43, 14. Dez. 2009 (CET)Beantworten

Habe jetzt LA gestellt. -- 92.206.139.18 23:22, 14. Jan. 2010 (CET)Beantworten
Link zur Löschdiskussoion---<(kmk)>- 15:39, 15. Jan. 2010 (CET)Beantworten

Roton (Physik)

Artikel aus der allg. QS mit dem Wunsch nach Ausbau, danke --Crazy1880 08:36, 15. Jan. 2010 (CET)Beantworten

Die Wirbelquantisierung stammt nicht nur von Landau, sondern wurde (erstmalig? im Westen erstmalig?) von W.F. Vinen beschrieben.<ref>W. F. Vinen, Nature 181 (1958) 1524.</ref><ref>W. F. Vinen: Proc. Roy. Soc. A 260 (1961) 218.</ref>
Im Zusammenhang dieses Themas sind mir bei der Suprafluidität noch aufgefallen:
  • Redundanz zwischen Onnes-Effekt und Rollin-Film sollte durch Zusammenlegung und Redirect gelöst werden - wer war da zuerst da oder ist wichtiger (vermutlich Onnes)?
  • bei Suprafluidität könnten noch die Experimente von Reppy 1964 zu persistenten Strömen als Analogon zur Supraleitung (auch Andronikashvili 1946) erwähnt werden. --Dogbert66 14:41, 17. Jan. 2010 (CET)Beantworten

Pygmy-Resonanz

Kann man das auch etwas verständlicher Schreiben? Der Artikel ist übrigens Vollwaise, d.h. niemand verlinkt darauf. Kein Einstein 21:49, 15. Jan. 2010 (CET)Beantworten

Wow. Inhaltlich ist das nun von Claude J richtiggehend herauspoliert worden. Es fehlt nur noch die Verlinkung aus anderen Artikeln heraus. Kein Einstein 11:41, 16. Jan. 2010 (CET)Beantworten

Habe das bei Riesenresonanz verlinkt.--Claude J 13:43, 16. Jan. 2010 (CET)Beantworten

+1, was das Wow angeht!
Was die Verlinkungen angeht: a) Statt einer Verlinkung von Riesenresonanz wäre ich derzeit für eine Zusammenlegung der beiden Artikel (und Verweis vom dann nicht mehr existierenden), falls dort nicht ein ähnlicher Ausbau zusammengezaubert wird. b) Bei der GSI ließe sich evtl. ein Absatz über die LAND-Kooperation einbauen. Aus dem neuen Absatz wäre dann mit dieser Quelle ein Link auf Pygmy-Resonanz und andere untersuchte Effekte möglich.
@ClaudeJ: drei Bitten: 1.) Kannst Du evtl. noch erklären, was die Resonanz mit der Neutronenzustandsgleichung zu tun hat (die Frage stellt sich mir beim Lesen dieses Papers). Evtl. ergibt sich daraus einen Verlinkung von Neutronenstern oder von Neutron. 2.) Eine Schwingung kommt doch nur bei einer Wechselwirkung zustande - um welche Wechselwirkung handelt es sich hier? Falls wirklich ein elektrischer Dipol schwingt und eine reine elektrostatische WW gemeint ist, wäre evtl. noch anzumerken, dass es um die Untersuchung der Struktur von Neutronen geht, die (obwohl von außen neutral) im Innern eine Ladungsverteilung haben. Und hier geht es dann anscheinend um eine Verschiebung der positiven/negativen Anteile mehrerer Neutronen gegenüber dem Restkern? Habe ich das so richtig verstanden??? Zumindest sollte klar werden, wie man den Effekt beobachtet (vermutlich eine elektromagnetische Strahlung, die außen gemessen wird??). 3.) Beim Vergleich mit 2-Phonon-Zustand und GDR ist mit dazwischenliegend die Frequenz gemeint? die Energie? Kannst Du den Satz bitte etwas klarer formulieren. --Dogbert66 13:55, 16. Jan. 2010 (CET)Beantworten

Gemeint ist eine Kernschwingung, mit allen beteiligten Kräften, in erster Linie den Kernkräften (vielleicht ist hier der link auf Dipol verwirrend, gemeint ist nur die Multipolarität und Parität - von elektrischem Dipol-Charakter, ich glaube man diskutiert aber auch mögliche M1 Beiträge). Schwingen tut nach der gängigen Interpretation eine dünne Überschuss-Neutronen-"Schale". In Neutronenstern würde ich das nicht erwähnen, dazu ist das zu speziell. Riesenresonanz (habe den Artikel inzwischen ausgebaut) ist das erheblich wichtigere und grundlegendere Phänomen, schon seit den 1940er Jahren bekannt, die Pygmäen-Resonanz ist zwar aktuell Forschungsthema in der Kernstrukturuntersuchung, aber erheblich jünger. Ich wäre daher gegen eine Zusammenlegung. Bei der Lage ist die Energie gemeint, ich meine das steht da deutlich (ein Bild ist in dem verlinkten Artikel von Zilge). Der ursprüngliche Ersteller (meinem Gefühl nach Experimentalphysiker) ist anscheinend sehr viel skeptischer bezüglich der Interpretation als Schwingung einer Neutronenschale.--Claude J 14:10, 16. Jan. 2010 (CET)Beantworten

Kein QS-Fall mehr, kein Vollwaise mehr. Weitere Diskussionen natürlich nicht ausgeschlossen - aber das Bapperl kann weg.

Dieser Abschnitt kann archiviert werden. -- -- Kein_Einstein 14:48, 16. Jan. 2010 (CET)Beantworten

@ClaudeJ:
Ah, danke. Ich verstehe, meine Frage (betreffend Pygmy und GDR!) muss in zwei Teile zerlegt werden: a) was schwingt? Und da ist natürlich einleuchtend, dass da die starke WW im Vordergrund stehen muss (obwohl der genaue Mechanismus nicht klar ist??). b) wie wird die Schwingung beobachtet? Dein Text (mit elektrischem Dipol etc.) hat mich tatsächlich an eine elektromagnetische Kopplung mit einem elektrischen Dipol denken lassen - insbesondere dem Text bei Riesenresonanz entnehme ich jetzt aber, dass die Resonanz im entsprechenden Energiebereich nicht nur bei Beschuss mit Photonen, sondern auch mit Elektronen oder Ionen auftritt. D.h. es kann prinzipiell auch ein ganz anderer Kopplungsmechanismus zutreffen (obwohl auch Elektronen über ein intermediäres Photon mit einem elektrischen Dipol wechselwirken können). Oder ist prinzipiell auch eine elektromagnetische Kopplung an den positiv geladenen Kern denkbar, der die Schwingung dann ann die Neutronen weitergibt??
Meine Bitte ist also immer noch, die erfragten Sachverhalte zur besseren Oma-Verträglichkeit in den Artikel einzubauen. Danke aber insbesondere auch fürs "Zaubern" bei Riesenresonanz!!! --Dogbert66 15:11, 16. Jan. 2010 (CET)Beantworten

Der ganze Kern schwingt. Welchen Anteil Protonen oder Neutronen haben drückt sich im Isospin Charakter der Schwingung aus (bei GDR z.B. Isovektor, es gibt auch isoskalare Dipolresonanzen). Wenn der Kern schwingt, dann natürlich auch die Protonen, was zu elektromagnetischem Multipolverhalten führt. Daran koppeln die zur Anregung benutzten virtuellen (Coulomb-Anregung) oder reellen Photonen (Bremsstrahlung aus Beschleunigern) an.--Claude J 15:44, 16. Jan. 2010 (CET)Beantworten

Nach zwei BKen mit dir im Artikel habe ich dort eine Erklärung unterbringen können, ohne die Diskussion hier mitbekommen zu haben. Ich hoffe, ich liege nicht zu sehr daneben.
"Der ganze Kern schwingt" – naja, der Schwerpunkt bleibt natürlich in Ruhe (solange nicht gerade ein Ion vorbeifliegt).
Gruß – Rainald62 15:58, 16. Jan. 2010 (CET)Beantworten
Nachdem das Wort "elektrisch" vor Dipol jetzt gestrichen worden ist, tendiere ich zu Variante a) im folgenden Verständnisproblem: ist der Dipol a) eine Eigenschaft der Schwingung (z.B. die Schwingung im Dipolmoment der Isospinverteilung) oder b) eine Eigenschaft der Kopplung (und damit offensichtlich ein elektrischer Dipol)?
Und die Monopolschwingung etc. spielt bei der Riesenresonanz eine Rolle (dann nicht GDR sondern GMR??), nicht aber bei der PDR? --Dogbert66 16:53, 16. Jan. 2010 (CET)Beantworten

Beides (ist ja auch über Auswahlregeln verknüpft). Es gibt elektrische und magnetische Dipol-Riesenresonanzen, auch Monopolresonanzen, Quadrupolresonanzen etc. Das elektrisch habe ich nur entfernt weil ich es weniger in der Literatur fand. Mit "ganzer Kern schwingt" waren natürlich Formschwingungen gemeint, die dann in Multipolanteile aufgelöst werden. Hier fehlt anscheinend ein Artikel Kollektive Kernanregungen. PS: ich hoffe du hast nicht vor in allen kernphysikalischen Artikeln die Kernkraft zu erläutern, im Sinne von Restwechselwirkung der starken WW. Das klingt ein wenig als gäbe es für dich nur die QCD Beschreibungsebene der starken WW.--Claude J 19:57, 16. Jan. 2010 (CET)Beantworten

Nein, ClaudeJ, mir geht es nur um diesen Artikel. Mir ist (war) der Effekt im Gegensatz zu Dir nicht bekannt, und ich bitte Dich einerseits um Oma-Tauglichkeit, möchte ihn aber andererseits auch selbst verstehen.
Neuer Versuch, meine Frage zu formulieren (es ist immer noch dieselbe Frage): Die Schwingung einer (elektrisch neutralen) Neutronenschale gegenüber einem neutralen Kern kann selbstverständlich Monopol-/Dipol- etc. Moden haben. Sie ist (sofern keine Ladungsverteilung im Innern der Neutronen angenommen wird) jedoch erst einmal elektrisch neutral und kann somit auch nicht an Photonen koppeln. Wenn das Wort "elektrisch" dabei in der Literatur nicht vorkommt, so deutet das darauf hin, dass erst einmal nur eine Schwingung der Massenverteilung der Neutronen gemeint ist (die auch entsprechende Moden hat). Da der gemeinsame Schwerpunkt von positivem Restkern und Neutronenschale jedoch (vermutlich??) in Ruhe bleibt, so hat man bei einer Dipolschwingung der Massen- auch gleichzeitig eine Dipolschwingung der Isospinverteilung und auch der elektrischen Ladung (des Restkerns!). Und an letzteres können Photonen (egal ob primär oder intermediär) wieder koppeln. Habe ich das jetzt richtig verstanden?
Natürlich sollte davon nicht alles in den Artikel. Aber da der Dipol eigentlich nur von elektrischen Dipolen spricht, so könnte man (außer der Streichung von "elektrisch") eben hinzufügen, was genau da schwingt (vermutlich: Neutronenschale). Und im zweiten Satz könnten man nun wiederum der Kopplung bei der Beobachtung Rechnung tragen, dass man das Wort "Stärke" evtl. durch etwas Aussagekräftigeres ersetzt. Der "Wirkungsquerschnitt" aus der GDR mag da ja nicht wirklich omatauglicher sein, aber wenn ich dass richtig verstanden habe, werden ja auch nur bei Beschuss mit bestimmten Energien gehäufte Zerfälle beobachtet, die auf eine kleinere oder größere dazwischenliegende Resonanz hindeuten. Ein richtig formulierter Halbsatz wäre hier besser als das einfache "Stärke".
Sehr freuen würde mich aufgrund der etlichen Annahmen, wenn man in "Einleitung (max .2-3 Sätze) - Beobachtung - Interpretation - (ggf. Bedeutung oder Anwendung)" unterteilen könnte. Dazu wäre ich inzwischen fast schon in der Lage. --Dogbert66 10:56, 17. Jan. 2010 (CET)Beantworten

Was da "schwingt" ist umstritten. Geht man mal von der Neutronenhaut aus, schwingt diese gegen den Restkern mit den Protonen, an die die Photonen ankoppeln. Das sind natürlich erstmal anschauliche Bilder, die kollektiven Schwingungen versucht man dann im qm Vielteilchenproblem zu berechnen (Überlagerung von 1p-1h Anregungen in RPA etc.). Das Wort elektrisch kommt schon in der Literatur vor. Bei den kollektiven Moden werden solche mit Raumspiegelungs-Parität (-)**l (l Drehimpuls) als elektrisch bezeichnet, zusätzlicher Faktor (-) für magnetisch.--Claude J 14:32, 17. Jan. 2010 (CET)Beantworten