Keramischer Faserverbundwerkstoff
Unter Keramischen Faserverbundwerkstoffen bzw. Ceramic Matrix Composites versteht man eine Werkstoffklasse innerhalb der Gruppe der Verbundwerkstoffe oder auch der technischen Keramiken. Sie sind charakterisiert durch eine zwischen Langfasern eingebettete Matrix aus normaler Keramik, die durch keramische Fasern verstärkt wird und so zur faserverstärkten Keramik, Verbundkeramik oder auch einfach Faserkeramik wird. Matrix und Fasern können dabei im Prinzip aus allen bekannten keramischen Werkstoffen bestehen, wobei in diesem Zusammenhang auch Kohlenstoff als keramischer Werkstoff behandelt wird.


Foto: MT Aerospace AG, Augsburg
Der Artikel beschreibt die zur Zeit industriell verfügbaren Verbundkeramiken mit ihren wichtige Herstellverfahren, wesentlichen Eigenschaften sowie einige Entwicklungs- und erfolgreiche Anwendungsbeispiele dieser relativ jungen Gruppe von Werkstoffen.
Einleitung
In Entwicklung und Anwendung von Verbundkeramik kommen zur Zeit im Wesentlichen oxidische Fasertypen zum Einsatz, die aus Aluminiumoxid (Al2O3) oder Mischkristallen aus Aluminiumoxid und Siliciumoxid (SiO2), sogenanntem Mullit, bestehen. An nicht-oxidischen Fasern werden im Wesentlichen Kohlenstoff- (C-) und sogenannte Siliciumcarbid- (SiC-)Fasern verwendet. Die verwendeten Faser- und Matrixmaterialien sind bei Anwendungen zur Zeit im Wesentlichen auf Aluminiumoxid, Kohlenstoff und Siliciumcarbid beschränkt Vorlage:Lit.
Das Motiv zur Entwicklung dieser Keramiken ist aus den Problemen entstanden, die sich beim Einsatz konventioneller technischer Keramiken wie Aluminiumoxid, Siliciumcarbid, Aluminiumnitrid, Siliciumnitrid oder Zirkonoxid gezeigt haben: alle diese Werkstoffe zerbrechen leicht unter mechanischen oder thermomechanischen Belastungen, weil selbst kleine Fertigungsfehler oder Kratzer auf der Oberfläche zum Startpunkt eines Risses werden können. Einer Ausbreitung von Rissen wird, anders als bei Metallen (Stichwort: Duktilität) und ähnlich wie bei Glas, nur ein sehr geringer Widerstand entgegengesetzt. Charakteristisch ist ein sprödes Bruchverhalten, das viele Anwendungen erschwert oder unmöglich macht. Die Verwendung von Langfasern hat diesen Risswiderstand drastisch erhöhen können und zu Eigenschaften geführt, mit denen neue Anwendungsfelder erschlossen werden konnten und können.
Üblicherweise werden die so hergestellten Verbundkeramiken in der Form "Fasertyp/Matrixtyp" abgekürzt. So steht C/C zum Beispiel für Kohlefaser-verstärkter Kohlenstoff oder C/SiC für Kohlefaser-verstärktes Siliciumcarbid.
Herstellung allgemein
Die Herstellung von Bauteilen aus faserverstärkter Keramik erfolgt in der Regel in drei Schritten:
- Ablegen und Fixieren der Fasern in der gewünschten Bauteilform
- Einbringen des keramischen Matrixmaterials zwischen die Fasern
- Endbearbeitung und bei Bedarf weitere Nachbehandlungsschritte wie zum Beispiel das Anbringen von Beschichtungen
Der erste und letzte Schritt ist bei allen Typen von faserverstärkter Keramik nahezu gleich:
Beim ersten Schritt werden die Fasern ähnlich wie bei der Herstellung von faserverstärktem Kunststoff mit verschiedenen Techniken abgelegt und fixiert: Ablegen von Fasergewebe, Wickeln, Flechten oder Stricken von Fasern sind Beispiele hierfür. Im dritten und letzten Schritt sind konventionelle schleifende, bohrende oder fräsende Bearbeitungstechniken üblich, wie bei allen Keramiken durchweg mit Diamantwerkzeugen. Durch die besonderen Eigenschaften der faserverstärkten Keramik sind zusätzlich noch Bearbeitungstechniken mit dem Wasserstrahl und dem Laser ohne Probleme möglich.
Der zweite Schritt kennt im Prinzip vier unterschiedliche Verfahren, die keramische Matrix zwischen die Fasern zu bringen:
- Abscheidung von Keramik aus einem Gasgemisch
- Erzeugung durch Pyrolyse eines organischen Kunstharzes
- Erzeugung durch chemische Reaktion
- Erzeugung durch Elektrophorese mit keramischem Pulver
Das vierte Verfahren wird zur Zeit noch nicht industriell eingesetzt. Bei allen genannten Verfahren gibt es noch Untervarianten, die sich in verfahrenstechnischen Details unterscheiden, sowie Kombinationen. Sie können im Studium von Büchern, Fachzeitschriften und Kongressliteratur nachvollzogen werden. Im Folgenden sind sie nur grob und vereinfacht beschrieben.
Allen Verfahren gemeinsam ist, dass der Endwerkstoff porös ist.
Bemerkungen über keramische Fasern
Foto: MT Aerospace AG, Augsburg
Unter keramischen Fasern werden im Zusammenhang mit faserverstärkter Keramik nicht nur Fasern verstanden, die, wie echte Technische Keramik, eine polykristalline Materialstruktur aufweisen, sondern auch solche mit amorphem Aufbau der Atome. Wegen der hohen Temperatur bei der Herstellung von Verbundkeramik ist die Verwendung nicht nur der organischen, sondern auch der anorganischen Metall- und Glasfasern ausgeschlossen. Nur hochtemperaturstabile keramische Fasern aus kristallinem Aluminiumoxid, Mullit (Mischkristallen aus Aluminiumoxid und Siliciumoxid), weitgehend kristallinem Siliciumcarbid sowie Zirkonoxid, Kohlenstofffasern mit den graphitischen Lamellenebenen in Faserrichtung sowie amorphe Fasern aus Siliciumcarbid sind in Anwendungen im Einsatz. Alle diese "keramischen" Fasern zeichnen sich aus durch eine Dehnbarkeit, die zum Teil wesentlich über der Dehnbarkeit normaler Keramik (etwa 0,05 bis 0,10%) liegt. Ursache hierfür ist, dass in den Fasern Additive enthalten sind, ohne die zum Beispiel die amorphen SiC-Fasern niemals eine Dehnbarkeit von 2% und eine Zugfestigkeit von über 2000 MPa erreichen könnten. Diese Eigenschaften erlauben auch die Herstellung dreidimensionaler Faserstrukturen (siehe Bild).
Herstellung im Einzelnen
Abscheidung der Matrix aus einem Gasgemisch
Dieses Verfahren ist abgeleitet aus Beschichtungsverfahren, bei denen ein bestimmtes Gas oder Gasgemisch an erhitzten Oberflächen Material abscheidet. Es wird CVD-Verfahren genannt. CVD ist die Abkürzung für Chemical Vapour Deposition.
Bei der Anwendung dieses Verfahrens auf ein in Bauteilform fixiertes Fasergebilde scheidet sich auf den Faseroberflächen auch im Inneren des Bauteils das Beschichtungsmaterial ab. Daher wird dieses Verfahren auch mit Chemical Vapour Infiltration, abgekürzt CVI-Verfahren bezeichnet.
Ein Beispiel hierfür ist ein Verfahren zur Herstellung von C/C: ein C-Fasergebilde wird unter bestimmten Druck- (in der Regel unter 100 hPa) und Temperaturbedingungen (in der Regel über 1000°C) mit einem Gemisch aus Argon und Methan (CH4) oder Propan (C3H8) begast. Aus dem Gasgemisch scheidet sich Kohlenstoff auf und zwischen den Fasern ab.
Ein weiteres Beispiel ist die Abscheidung von Siliciumcarbid. Hierzu wird üblicherweise ein Gasgemisch aus Wasserstoff als Katalysator und Methyl-Trichlor-Silan (MTS, chemische Formel CH3SiCl3) verwendet, das auch bei der Herstellung von Silikonen eine Rolle spielt. Das Kohlenstoff- und Siliciumatom des MTS-Moleküls bildet auf jeder über 800°C heißen Oberfläche Siliciumcarbid, die übrigen H- und Cl-Atome verlassen als HCl-Gas (Salzsäure) mit dem Wasserstoff den Prozess.
Bei der Abscheidung entstehen zwangläufig geschlossene Poren, wenn Gaszutrittsöffnungen zugewachsen sind.
Matrixerzeugung durch Pyrolyse eines organischen Kunstharzes
Geeignete Kunstharze aus Kohlenwasserstoffen bilden bei der Pyrolyse unter Volumenschwund und Ausgasung Kohlenstoff. Kunstharze, bei denen ein Teil der Kohlenstoffatome durch Siliciumatome ersetzt worden ist, bilden bei der Pyrolyse ebenfalls unter Volumenschwund und Ausgasung entsprechend ein amorphes und meist mit Kohlenstoff angereichertes Siliciumcarbid.
Fasern, Fasergewebe oder -gewebestapel und auch dreidimensionale Fasergebilde lassen sich mit diesen Kunstharzen tränken bzw. imprägnieren. Durch anschließende Härtung und Pyrolyse wird das Gebilde in einer ersten Stufe fixiert. Durch den Volumenschwund hat die Matrix in dieser Stufe noch eine hohe Porosität, die für die meisten Anwendungen nicht akzeptabel ist. Um die Porosität zu senken, sind daher in der Regel fünf bis acht anschließende Zyklen aus Imprägnierung, Härtung und Pyrolyse zur Fertigstellung des Rohbauteiles erforderlich.
Das Verfahren wird meist als Liquid Polymer Infiltration bezeichnet, abgekürzt mit LPI-Verfahren, und manchmal auch als Polymer Infiltration and Pyrolysis, abgekürzt PIP-Verfahren.
Auch hier gibt es eine Restporosität, da jedes Harz bei der Pyrolyse im Volumen schrumpft. Die Porosität reduziert sich mit jedem Infiltrations- und Pyrolysezyklus.
Matrixerzeugung durch chemische Reaktion
Bei diesem Verfahren ist zwischen den Fasern bereits ein Material vorhanden, das durch chemische Reaktion mit einem weiteren Stoff zur eigentlich gewünschten keramischen Matrix umgewandelt wird. Die Herstellung konventioneller Keramiken benutzt solche Reaktionen ebenfalls: So wird reaktionsgebundenes Siliciumnitrid (RBSN) durch die Reaktion von Siliciumpulver mit Stickstoff hergestellt und poröser Kohlenstoff wird mit Silicium zum siliciumhaltigen Siliciumcarbid, sogenanntem SiSiC, umgesetzt.
Ein Beispiel bei der Herstellung von faserverstärkter Keramik ist die sogenannte gerichtete Schmelzinfiltration: geschmolzenes Aluminium zwischen den Fasern wird durch den Zutritt von Sauerstoff zur Aluminiumoxid-Matrix oxidiert. Legierungsbestandteile in der Schmelze verhindern, dass die durchgängige Oxidation durch Bildung von Aluminiumoxidbarrieren unterbrochen wird. Der fertige Werkstoff enthält immer noch Restbestandteile von nicht abreagiertem Aluminium.
Ein weiteres Beispiel, das bei der Herstellung keramischer Bremsscheiben industriell eingeführt worden ist, ist die Umwandlung des Matrixkohlenstoffes eines porösen C/C-Materials mit flüssigem Silicium. Bei kontrollierter Prozessführung unter Vakuum und oberhalb der Schmelztemperatur des Siliciums (1410°C) reagiert im Wesentlichen der Matrixkohlenstoff zu Siliciumcarbid und die Faser bleiben nahezu unberührt und können so ihre Verstärkungsfunktion erfüllen. Dieses Verfahren wird meist mit Liquid Silicon Infiltration, abgekürzt LSI-Verfahren, bezeichnet.
Bei diesen Verfahren liegt die Restporosität bei niedrigen Werten von unter 3%.
Matrixerzeugung durch Elektrophorese
Bei der Elektrophorese werden dispergierte, geladene Teilchen in einer Flüssigkeit im elektrischen Gleichspannungsfeld zweier Elektroden auf die entgegengesetzt geladene Oberfläche transportiert und dort abgesetzt. Wird als Oberfläche ein Fasergebilde benutzt, scheiden sich die Pulverteilchen dort ab und füllen auch die Faserzwischenräume aus. Aus diese Weise hergestellte faserverstärkte Keramik ist zur Zeit noch nicht im industriellen Einsatz. Probleme sind unter anderem die relativ komplexe Aufbereitung und Dispergierung der Pulver, die Einstellung der Ladung und die Begrenzung auf recht dünne Bauteilwandstärken.
Bleibende Porosität wird auch hier durch das Zuwachsen von Zutrittskanälen erzeugt.
Eigenschaften
Mechanische Eigenschaften
Grundmechanismus der mechanischen Eigenschaften
Die in der Einleitung erwähnte Erhöhung des Risswiderstandes durch die Einbettung keramischer Fasern in die keramische Matrix basiert auf folgendem Grundmechanismus:

Bei Belastung bildet das Matrixmaterial Risse genau wie in der unverstärkten Form bei Dehnungen über (je nach Matrixtyp) 0,05%. Die eingebetteten Fasern bilden eine Brücke über den Riss. Dieser Mechanismus setzt voraus, dass die Matrix längs der Fasern gleiten kann, also nur schwach mechanisch mit den Fasern verbunden ist. Bei fester Verbindung zwischen Matrix und Fasern müssten die Fasern in der Brücke eine vernachlässigbare Steifigkeit besitzen, was sie nicht tun. Das bedeutet, dass bei fester Verbindung der Matrixriss an der gleichen Stelle auch durch die Fasern ginge und die faserverstärkte Keramik ein unverändert sprödes Bruchverhalten zeigte.
Das Geheimnis faserverstärkter Keramik mit hohem Risswiderstand besteht darin, bei der Herstellung sicher zu stellen, dass die Verbindung zwischen Fasern und Matrix ein Gleiten zulässt. Nur auf diese Weise können die Fasern eine nennenswerte Brücke über Risse bilden und ihre Dehnbarkeit (bei C- und SiC-Fasern über 2 %, bei Al2O3-Fasern knapp 1 %) zur Geltung bringen. Bei der Herstellung von faserverstärkter Keramik kann dieser Gleitmechanismus durch eine dünne Beschichtung der Fasern mit Kohlenstoff oder Bornitrid erzeugt werden. Diese Beschichtungen haben atomar angeordnete, lamellenartige Gleitebenen und bilden das Schmiermittel zwischen Fasern und Matrix.
Eigenschaften bei Zug- und Biegebelastungen, Risswiderstand
Der Einfluss der Faserbeschichtung auf Risswiderstand und Dehnbarkeit solcher Verbundkeramiken wird bei Biege- und Zugversuchen mit Materialproben ermittelt und mit Risswiderstandskurven dargestellt.

Bildlegende: SiSiC: konventionelles SiSiC, SiCSiC(CVI) und CSiC(CVI): im CVI-Verfahren hergestelltes SiC/SiC bzw. C/SiC, CSiC(95) und CSiC(93): im LPI-Verfahren hergestelltes C/SiC, Ox(PP): oxidische Verbundkeramik, CSiC(Si): im LSI-Verfahren hergestelltes C/SiC.
Bei allen Versuchen wird mit zunehmender Kraft die gekerbte Probe (siehe Bild) bis zum Bruch belastet. Kraft und der Weg des die Kraft einleitenden Stempels werden gemessen und sind im Prinzip nach der Umrechnung auf die Spannung (Einheit: [MPa]) in den Messkurven dokumentiert. Physikalisch ist das Produkt aus Kraft multipliziert mit dem Weg die bis zur Zerstörung der Probe aufgewandte Energie. Da diese Energie bei über der Wegstrecke veränderlicher Kraft über das Integral ermittelt werden muss, entspricht dies der Fläche unter den Kurven.
Die Fläche unter den Risswiderstandskurven der verschiedenen Verbundkeramiken und damit der erforderliche Energieaufwand, mit dem ein Riss durch die Materialproben getrieben werden kann, ist ein vielfaches der Fläche unter der gezeigten Kurve der konventionellen SiSiC-Keramik. Das Maximum der verschiedenen Risswiderstandskurven gibt das Kraftniveau an, das erforderlich ist, um den Riss durch die Probe zu treiben. Unterschiedliche Typen und Herstellverfahren führen zu erkennbaren und deutlichen Unterschieden in den Qualitäten dieser Werkstoffklasse, speziell im Hinblick auf den Risswiderstand.
Materialtyp | Al2O3/Al2O3 | Al2O3 | CVI-C/SiC | LPI-C/SiC | LSI-C/SiC | SSiC |
Porosität (%) | 35 | <1 | 12 | 12 | 3 | <1 |
Dichte (g/cm³) | 2,1 | 3,9 | 2,1 | 1,9 | 1,9 | 3,1 |
Zugfestigkeit (MPa) | 65 | 250 | 310 | 250 | 190 | 200 |
Bruchdehnung (%) | 0,12 | 0,1 | 0,75 | 0,5 | 0,35 | 0,05 |
E-Modul (GPa) | 50 | 400 | 95 | 65 | 60 | 395 |
Biegefestigkeit (MPa) | 80 | 450 | 475 | 500 | 300 | 400 |
Erläuterungen zur Tabelle: Mit dem Vorsatz CVI-, LPI- und LSI- ist das Herstellverfahren der jeweiligen C/SiC-Verbundkeramik gemeint. Die Daten für die Verbundkeramiken und die oxidische Verbundkeramik Al2O3 der Firma Pritzkow Spezialkeramik stammen aus Vorlage:Lit, die Daten für SSiC aus einem Datenblatt der Firma H.C.Starck Ceramics. Die Zugfestigkeit für SSiC und Al2O3 wurde aus Bruchdehnung und E-Modul berechnet, da für konventionelle Keramiken Zugfestigkeiten nicht angegeben werden, sondern üblicherweise nur Biegefestigkeitswerte. Es muss darauf hingewiesen werden, dass es sich um durchschnittliche Werte handelt. Innerhalb der einzelnen Herstellverfahren auch der konventionellen Keramik gibt es zum Teil erhebliche Abweichungen von den angegebenen Werten.

Die Prüfung der Zugfestigkeit von Verbundkeramiken ergibt bei quasi-plastischem Kurvenverlauf mögliche Dehnungen bis zu einem Prozent, mehr als dem Zehnfachen der Dehnbarkeit aller technischen Keramiken. Die Tabelle zeigt auch hier, dass die unterschiedlichen Verbundkeramiktypen die Faserdehnbarkeit in unterschiedlichem Maße nutzen. In der Abbildung ist zu erkennen, dass die Bruchdehnung von CVI-SiC/SiC deutlich über 0,5% liegen kann. Die Messkurven zur Bestimmung der Biegefestigkeit sehen praktisch genauso aus wie die oben gezeigten Kurven zur Bestimmung des Risswiderstandes. Zur Bewertung von Zug- und Biegefestigkeiten ist zu beachten, dass Material ohne Matrix hohe Zug- (nämlich Faserzug-), aber so gut wie keine Biegefestigkeit aufweist. Umgekehrt zeigt Material mit hohem Matrixanteil und geringer Porosität hohe Biegefestigkeiten (wie konventionelle Keramik), die wiederum nichts darüber aussagen, ob die Dehnbarkeit der Fasern genutzt wird. Beide Werte müssen unabhängig voneinander betrachtet werden.
Sonstige mechanische Eigenschaften
In vielen Bauteilen aus Verbundkeramik liegen die Fasern zweidimensional Form als gestapelte Gewebelagen oder als gekreuzte Lagen eindimensional ausgerichteter Fasern vor. Eine Rissausbreitung zwischen diesen Lagen wird durch keine Faserbrücke behindert. Die Werte für die interlaminare Scherfestigkeit sind bei diesem Material entsprechend niedrig ebenso wie die Zugfestigkeit senkrecht zum Gewebe. Wie beim faserverstärkten Kunststoff sind mögliche Delaminationen eine Schwachstelle des Materials. Sie kann durch Einführung dreidimensionaler Faserstrukturen erheblich verbessert werden.
Material | CVI-C/SiC | LPI-C/SiC | LSI-C/SiC | CVI-SiC/SiC |
Interlaminare Scherfestigkeit (MPa) | 45 | 30 | 33 | 50 |
Zugfestigkeit senkrecht zur Faserebene (MPa) | 6 | 4 | - | 7 |
Druckfestigkeit senkrecht zur Faserebene (MPa) | 500 | 450 | - | 500 |
Bemerkungen zur Tabelle: Durch die Porosität sind die Druckfestigkeitswerte niedriger als bei konventioneller Keramik, wo für Silciumcarbid über 2000 MPa angegeben werden. Porosität und fehlende Faserbrücken führen zu den sehr niedrigen Zugfestigkeiten senkrecht zur Faserebene.
Die rissüberbrückende Wirkung der Fasern erlaubt auch eine hohe dynamische Belastung dieser Keramik. Proben werden in Wechsellastversuchen, sogenannten "Low-" oder "High-Cycle-Fatigue"-Versuchen, zyklischen Druck- und Zugbelastungen bis zum Bruch ausgesetzt. Je höher die Startbelastung gewählt wird, umso weniger Zyklen überlebt die Probe. Verschiedenen Startlasten aufgetragen gegen den Logarithmus der jeweils erreichten Zyklenzahl ergeben die sogenannte Wöhler-Gerade. Sie zeigt an, wieviele Tausend oder Millionen Lastzyklen das getestete Material bei einer bestimmten dynamischen Belastung überleben kann. Faserverstärkte Keramik kann hier mit ausgezeichneten Ergebnissen aufwarten: bei 80% der Dehnbarkeit zyklisch belastet überlebt SiC/SiC etwa 8 Millionen Zug-Druck-Zyklen.
Die Querkontraktionszahl zeigt senkrecht zur zweidimensionalen Faserebenen phasenweise eine Anomalie: sie nimmt in der Richtung senkrecht zu den Fasern negative Werte an, wenn durch interlaminare Risse die Probendicke in der Frühphase der Messung ansteigt statt abzunehmen.
Thermische und elektrische Eigenschaften
Die thermischen und elektrischen Eigenschaften von faserverstärkter Keramik ergeben sich aus den Bestandteilen von Fasern, Matrix und Poren und deren Zusammensetzung. Die Faserorientierung erzeugt darüber hinaus noch richtungsabhängige (anisotrope) Kennwerte.
Zu den häufigsten, zur Zeit verfügbaren Verbundkeramiken lässt sich Folgendes zusammenfassen:
Faserverstärkte Keramiken, die Oxide einsetzen, sind unverändert sehr gute elektrische Isolatoren und wegen der Poren steigt auch die thermische Isolationswirkung deutlich über die von konventionellen Oxidkeramiken.
Die Verwendung von Kohlenstofffasern erhöht die elektrische und die thermische Leitfähigkeit in Richtung der Fasern, sobald direkter elektrischer Kontakt zu ihnen vorliegt.
Siliciumcarbid als Matrix ist ein sehr guter Wärmeleiter. Als elektrischer Halbleiter nimmt sein elektrischer Widerstand mit steigender Temperatur ab. Siliciumcarbid-Fasern leiten Wärme und elektrischen Strom wegen der amorphen Mikrostruktur deutlich schlechter. In Verbundkeramik mit Siliciumcarbid als Matrix sinken sowohl die Wärme- aus auch die elektrische Leitfähigkeit wegen der Porosität auf niedrigere Werte. Einige Angaben sind in der folgenden Tabelle aufgelistet.
Material | CVI-C/SiC | LPI-C/SiC | LSI-C/SiC | CVI-SiC/SiC | SSiC |
Wärmeleitung (p) (W/mK) | 15 | 11 | 21 | 18 | >100 |
Wärmeleitung (s) (W/mK) | 7 | 5 | 15 | 10 | >100 |
Wärmedehnung (p) (10-6/K) | 1,3 | 1,2 | 0 | 2,3 | 4 |
Wärmedehnung (s) (10-6/K) | 3 | 4 | 3 | 3 | 4 |
spezifischer Widerstand (p) (Ohm cm) | - | - | - | - | 50 |
spezifischer Widerstand (s) (Ohm cm) | 0,4 | - | - | 5 | 50 |
Bemerkungen zur Tabelle: Zu nicht eingetragenen Werten fehlen Literatur- oder Herstellerangaben. Wegen der geringen Porosität zeigt das LSI-Material die höchste Wärmeleitfähigkeit aller Verbundkeramiken - ein Vorteil für den Einsatz dieses Werkstoffes als hochbelastetes Bremsscheibenmaterial. Auch hier gilt, dass die Werte selbst innerhalb der einzelnen Keramiktypen je nach Details beim Herstellprozess erheblich abweichen können.
Normale Keramik und technische Keramik sind empfindlich gegenüber Thermospannungen, die bei Thermoschockbelastungen besonders hoch sind. Die Ursache liegt in der geringen Dehnbarkeit und hohen Steifigkeit (hohem E-Modul) dieser Materialien. Temperaturunterschiede im Material erzeugen unterschiedliche Ausdehnung, die wegen des hohen E- Moduls zu entsprechend hohen Spannungen führt. Durch diese wird das Material überdehnt und bricht. In faserverstärkter Keramik werden solche Risse durch die Fasern überbrückt. Ein Bauteil erleidet keinen makroskopischen Schaden, auch wenn sich in der keramischen Matrix Risse gebildet haben. Der Einsatz dieser Materialklasse in Scheibenbremsen beweist die Leistungsfähigkeit von Verbundkeramik unter extremen Thermoschockverhältnissen.
Korrosionseigenschaften
Breitere Untersuchungen zum Korrosionsverhalten von faserverstärkter Keramik liegen noch nicht vor. Auch hier sind die Eigenschaften bestimmt durch die Eigenschaften der verwendeten Bestandteile der Verbundkeramik, nämlich Fasern und Matrix.
Generell sind keramische Werkstoffe im Vergleich zu den meisten übrigen Werkstoffen sehr korrosionsstabil. Die Vielzahl der Herstellvarianten mit verschiedenen Additiven, zum Beispiel Sinterhilfsmitteln, Mischformen, vor allem bei den Oxiden, Verunreinigungen, Glasphasen an den Korngrenzen und Porositätsunterschiede beeinflussen das Korrosionsverhalten entscheidend, da schon die Entstehung winziger korrosionsbedingter Risse oder Poren die Festigkeitswerte drastisch sinken lässt Vorlage:Lit.
Über die zur Zeit in Anwendungen wichtigen Verbundkeramikbestandteile lässt sich stichwortartig Folgendes aus der Literatur entnehmen:
- Aluminiumoxid:
Aluminiumoxid ist in sehr reinem Zustand gegen fast alles beständig; amorphe Glasphasen an den Korngrenzen und Siliciumoxid-Gehalt entscheiden die Korrosionsgeschwindigkeit in konzentrierten Säuren und Laugen. Bei hohen Temperaturen führen sie unter Last zu Kriechverhalten. Für Metallschmelzen wird Aluminiumoxid nur bei Edelmetallen wie Gold oder Platin eingesetzt.
- Aluminiumoxidfasern:
Verhalten sich ähnlich wie Aluminiumoxid. Die kommerziell verfügbaren Fasern sind nicht von der extremen Reinheit und daher anfälliger. Das Kriechverhalten bei Temperaturen über etwa 1000°C erlaubt zur Zeit auch kaum Anwendungen oxidischer Verbundkeramik.
Kohlenstoff korrodiert, besser verbrennt, an Sauerstoff bei Temperaturen ab etwa 500°C, ebenso oxidiert er in stark oxidierenden Medien (zum Beispiel konzentrierter Salpetersäure). In den meisten Metallschmelzen löst er sich oder bildet Carbide.
- Kohlenstofffasern:
Verhalten sich praktisch so wie Kohlenstoff.
Sehr reine Varianten des Siliciumcarbides gehören zu den korrosionsbeständigsten Werkstoffen. Lediglich starke Laugen, Sauerstoff ab ca. 800°C und die meisten Metallschmelzen reagieren mit diesem Material. Bei Metallschmelzen bilden sich sowohl Carbide als auch Silicide (Verbindungen von Silicium mit Metall).
Bei der mit Sauerstoff einsetzenden Reaktion von SiC zu SiO2 und CO2 bildet das Siliciumdioxid eine Schutzschicht, die passivierend wirkt ("passive Oxidation"). Bei noch höheren Temperaturen (ab ca. 1600°C) und gleichzeitigem Sauerstoffmangel (Partialdruck unter 50 mbar) bildet sich jedoch neben dem CO2 und CO das gasförmige Siliciummonooxid (SiO), das jede Schutzwirkung verhindert. Diese sogenannte "aktive Oxidation" führt unter den genannten Bedingungen zu sehr raschem Abbau des Siliciumcarbides.
Im Zusammenhang mit Verbundkeramik gilt diese Charakterisierung nur für Matrixmaterial, das mit dem CVI-Verfahren hergestellt worden ist. Dort besteht die Matrix aus sehr reinem, feinkristallinen SiC. Mit dem LPI-Verfahren hergestellte Matrix ist wegen der amorphen Struktur und der Porosität deutlich empfänglicher für Korrosion. In der Matrix des LSI-Materials sorgen die immer vorhandenen Reste von Silicium für eine leicht verschlechterte Korrosionsbeständigkeit.
- Siliciumcarbidfasern:
Da Silciumcarbidfasern durch Pyrolyse vernetzter, silicium-organischer Kunstharze (analog zur Herstellung von Kohlenstofffasern) hergestellt werden, gilt für sie das gleich wie für die im LPI-Verfahren hergestellte Matrix: deutlich stärkere Korrosionsempfindlichkeit gegen Laugen und oxidierende Medien.
Anwendungen
Vorbemerkungen
Mit faserverstärkter Keramik steht ein Werkstoff zur Verfügung, der gewichtige Nachteile konventioneller technischer Keramik, nämlich geringe Bruchzähigkeit und hohe Thermoschockempfindlichkeit, nicht mehr besitzt. Anwendungsentwicklungen haben sich folglich auf Gebiete konzentriert, in denen Zuverlässigkeit bei hohen, für Metalle nicht mehr zugänglichen Temperaturen und bei abrasiven (= Verschleiß erzeugenden) Belastungen gefordert sind. Folgende Schwerpunkte haben sich in Entwicklungen und Anwendungen bisher ergeben:
- Hitzeschutzsysteme für Raumflugkörper, die beim Wiedereintritt in die Erdatmosphäre hohen Thermospannungen und Vibrationsbelastungen ausgesetzt sind.
- Komponenten für Gasturbinen im Bereich der heißen Gase, also der Turbinenbrennkammer, den statischen, den Gasstrom lenkenden Leitschaufeln und den eigentlichen Turbinenschaufeln, die den Verdichter der Gasturbine antreiben.
- Bremsscheiben für hoch belastete Scheibenbremsen, die auf der Reibfläche extremen Thermoschockbedingungen unterliegen (anders als beim Eintauchen eines glühenden Teiles in Wasser entsteht hier keine wärmeisolierende Wasserdampfschicht).
- Komponenten für Gleitlager mit hoher Korrosions- und Verschleißbelastung.
Darüber hinaus sind grundsätzlich alle Bereiche interessant, in denen konventionelle technische Keramik verwendet wird oder in denen metallische Komponenten wegen Korrosion oder hoher Temperaturen keine befriedenden Lebensdauern erreichen. Die folgende Präsentation einiger Entwicklungs- und Anwendungsbeispiele ist bei weitem nicht vollständig und soll nur die Breite der technischen Möglichkeiten andeuten.
Entwicklungen für Anwendungen in der Raumfahrt
Im Bereich der Raumfahrt ist die faserverstärkte Keramik interessant für Komponenten des Hitzeschutzsystems von Raumgleitern. Beim Wiedereintritt in die Erdatmosphäre entstehen für einige Minuten Oberflächentemperaturen über 1500°C, die nur von keramischen Werkstoffen ohne größere Beeinträchtigung ertragen werden. Durch den Einsatz von faserverstärkter Keramik für heiße Strukturen in der Raumfahrt verspricht man sich im Unterschied zu den bisher eingesetzten Materialsystemen unter anderem:
- Gewichtseinsparungen
- Einen Beitrag des Thermalschutzsystems zur lasttragenden Struktur
- Wiederverwendbarkeit für mehrere Wiedereintritte

Da verfügbare oxidische Fasern bei diesen hohen Temperaturen unter Last kriechen und die amorphen SiC-Fasern durch Rekristallisation ihre Festigkeit verlieren, haben sich die Material- und Komponentenentwicklungen auf die Verbundkeramik C/SiC konzentriert. Die im Rahmen des HERMES-Programmes der ESA in den 80iger Jahren des letzten Jahrhunderts durchgeführten und 1992 abgebrochenen Entwicklungen haben nach mehreren Folgeprogrammen ihren Höhepunkt mit der Entwicklung und Qualifikation von Bugnase und Hecksteuerklappen des Raumgleiters X-38 der NASA gefunden [2] [3]. Nach mechanischen Tests der Klappen in Houston hat die NASA das X-38-Projekt im Sommer 2003 eingestellt.

Größe: 1,5x1,5x0,15 m, Masse: je 68 kg, gefügt aus Einzelteilen mit jeweils über 400 Schrauben/Muttern aus CVI-C/SiC.
Foto: MT Aerospace AG, Augsburg
Bestandteile dieser Arbeiten ist zum Beispiel die Qualifikation von Schrauben und Muttern aus Verbundkeramik gewesen [4]. Schrauben aus technischer Keramik sind zwar verfügbar, auf Grund der Kerben im Gewindegrund aber bruchempfindlich und haben bei weitem nicht die geforderte Zuverlässigkeit. Der Einsatz von Schrauben aus C/C ist auf Grund der Oxidationsempfindlichkeit ebenfalls zu risikoreich.
Eine weitere wichtige Komponente dieser Steuerklappen ist das zentral gelegene Lager, über das die Kraft für die Bewegung eingeleitet wird. Dieses Lager wurde unter realitätsnahen Bedingungen (4t Last, 1600°C auf der Unterseite, Sauerstoffkonzentration auf dem Niveau beim Wiedereintritt in die Erdatmosphäre und gleichzeitige 8°-Lagerbewegungen mit einer auf und ab Bewegung in vier Sekunden) erfolgreich beim DLR in Stuttgart getestet; fünf Wiedereintrittsphasen wurden auf diese Weise simuliert [5].
Die Verwendung von C/SiC hat die Entwicklung und Qualifikation von Beschichtungssystemen erzwungen, die den raschen Ausbrand der C-Fasern unter den Wiedereintrittsbedingungen verhindern. Versuche im Plasmastrom unter simulierten Wiedereintrittsbedingungen haben den Erfolg dieser Entwicklungsarbeiten nachgewiesen.
Man muss an dieser Stelle darauf hinweisen, dass diese Qualifikationen dem Einsatz für diesen speziellen Fall gedient haben. Die Hochtemperaturbelastung dauert bei einem Wiedereintritt etwa 20 Minuten. Bei Wiederverwendbarkeit addiert sich die Dauer auf wenige Stunden zyklischer Belastung. Ein Einsatz von oxidationsgeschütztem C/SiC für industrielle Hochtemperaturanwendungen mit mehreren Hundert oder Tausend Stunden geforderter Lebensdauer ist damit noch nicht sichergestellt.
Entwicklungen für den Einsatz in Gasturbinen
Ziel des Verbundkeramikeinsatzes in Gasturbinen ist die Erhöhung der Gastemperatur, die einen Anstieg des Wirkungsgrades zu Folge hat.
Die komplexe Formgebung für Leitschaufeln und Turbinenschaufeln in Gasturbinen sowie die sehr hohe thermische und mechanische Belastung dieser Teile haben dazu geführt, dass zunächst mit Erfolg nur die Entwicklung von Brennkammern aus Verbundkeramik vorangetrieben worden ist. Am weitesten sind hier die Fortschritte in den Vereinigten Staaten gediehen. Eine Brennkammer aus SiC/SiC-Verbundkeramik auf der Basis einer speziellen hochtemperaturfesten SiC-Faser ist über 15.000 Stunden in einer Gasturbine im Einsatz gewesen [6]. Da SiC in solchen Zeiträumen bei Temperaturen von etwa 1100°C nennenswert durch Oxidation zerstört wird, musste auch hier ein Oxidationsschutzsystem entwickelt werden. Es besteht aus einem mehrschichtigen System oxidischer Keramiken [7].
Einer schnellen Umsetzung der bisherigen Ergebnisse in reale Anwendung steht noch entgegen, dass das getestete Temperaturniveau noch keine Vorteile gegenüber den herkömmlichen metallischen Brennkammern bietet, dass die der Brennkammer folgenden Komponenten (Leitschaufeln und Turbinenschaufeln) ebenfalls für ein erhöhtes Temperaturniveau entwickelt und qualifiziert werden müssen und dass die Kosten für die Herstellung des Verbundwerkstoffsystems aus speziellen SiC-Fasern, SiC-Matrix und speziellem Beschichtungssystem noch zu hoch sind.
Anwendung als Bremsscheibe
Nach den Bremsscheiben aus C/C-Material, die schon seit längerem in Rennwagen der Formel 1 und in Bremsen von Flugzeugen eingesetzt werden, sind inzwischen Bremsscheiben aus C/SiC-Material, die mit dem LSI-Verfahren hergestellt werden, kommerziell verfügbar und werden in teueren Sportwagen und demnächst sicher auch in Fahrzeugen der Luxusklasse gegen Aufpreis angeboten. Das LSI-Verfahren bietet Kostenvorteile bei der Herstellung. So werden die Scheiben aus einem Gemisch von Kurzfasern und Harz schnell und kostengünstig gepresst, gehärtet und zur C/C-Scheibe pyrolysiert und anschließend, wie oben schon beschrieben, mit geschmolzenem Silicium in eine LSI-C/SiC-Scheibe umgewandelt.
Die Vorteile dieser Bremsscheiben lassen sich wie folgt zusammenfassen:
- Der Scheibenverschleiß ist sehr gering und erlaubt je nach Fahrweise auch den Einsatz einer Scheibe über die gesamte Lebensdauer des Fahrzeuges. Bis zu 300.000 km werden bei normaler Belastung angegeben.
- Es gibt auch bei hoher Beanspruchung keine Schwankungen im Reibkoeffizienten, den bei Metallscheiben bekannten sogenannten Fading-Effekt.
- Im Unterschied zu Bremsscheiben aus C/C wird kein Einfluss von Feuchtigkeit beobachtet.
- Das Scheibenmaterial ist außerordentliche korrosionsbeständig und unempfindlich gegenüber Streusalzwirkung im Winter.
- Die Masse kann im Vergleich zur Stahlscheibe auf ca. 40% reduziert werden. Das bedeutet wegen der deutlich geringeren ungefederten Massen der Räder verbesserten Fahrkomfort.
Da die C-Fasern weitgehend durch die SiC-Matrix vor Oxidation geschützt sind und der Zeitraum, in der Bremsscheiben Temperaturen von über 500°C nennenswert überschreiten, in der gesamten Lebensdauer eines Fahrzeuges auf wenige Stunden begrenzt ist, spielt die Oxidation des Werkstoffes bei dieser Anwendung keine wesentliche Rolle.
Es bleibt abzuwarten, ob die Herstellkosten für solche Scheiben so weit abgesenkt werden können, dass auch Fahrzeuge der Mittelklasse damit ausgestattet werden. Den aktuellen Stand kann man aus den Internetseiten der jeweiligen Anbieter entnehmen.
Anwendungen in Gleitlagern
In Gleitlagern von Pumpen wird konventionelles SSiC oder auch das kostengünstigere SiSiC schon seit über 20 Jahren mit viel Erfolg verwendet Vorlage:Lit. Das Lager benutzt dabei die von der Pumpe geförderte Flüssigkeit als Schmiermittel. Ursache für den Erfolg dieses Lagekonzeptes ist die Korrosionsfestigkeit gegenüber fast allen Medien und der durch die große Härte bedingte extrem geringe Verschleiß bei Reibbelastung oder abrasiver Belastung durch Partikel sowie der niedrige Reibkoeffizient bei Flüssigkeitsschmierung. Die SiC-Komponenten des Gleitlagers bestehen aus der sogenannten Wellenschutzhülse, die auf der Welle montiert ist und in der Lagerbuchse rotiert. Die SiC-Lagerbuchse ist in der Regel in ihre metallische Umgebung eingeschrumpft und steht unter Druckspannung. Ein spröder Bruch dieser Komponente ist damit sehr unwahrscheinlich. Die SiC-Wellenschutzhülse hat diesen Vorteil nicht und wird deshalb in der Regel mit einer großen Wandstärke ausgeführt und/oder mit speziellen konstruktiven Vorkehrungen eingebaut. Bei großen Pumpen mit entsprechend großen Wellendurchmessern (100 bis 300 mm) sowie bei Pumpen mit hoher Lagerbelastung hat sich wegen des Ausfallrisikos der Wellenschutzhülse das keramische Lagerkonzept erst mit dem Einsatz von Verbundkeramik realisieren lassen. Auf dem Prüfstand konnte gezeigt werden, dass die Lagerpaarung aus CVI-SiC/SiC und konventionellem SSiC unter Mischreibungsbedingungen nahezu das Dreifache an spezifische Lagerbelastung ertragen kann wie viele andere geprüfte Paarungen [8] . (Mit "spezifischer Lagerbelastung" ist das Produkt aus Reibkoeffizient (dimensionslos), Laufgeschwindigkeit (m/s) und Lagerbelastung (MPa oder N/mm²) gemeint; es gibt die im Lagerspalt umgesetzte Leistung in W/mm² an und wird oft auch - unter Weglassung des Reibkoeffizienten - als "P mal V-Wert" angegeben.)

Foto: MT Aeropace AG
Kesselspeisewasserpumpen [8] in Kraftwerken, mit denen einige tausend m³/h 160 °C heißes Wasser auf 20 bar Druck gefördert werden, oder Rohrgehäusepumpen [9], mit denen einige zehntausend m³/h Schleusenwasser oder Meerwasser für Entsalzungsanlagen gepumpt werden, sind seit 1994 die bisher bevorzugten Einsatzfälle für wassergeschmierte Gleitlager mit Wellenschutzhülsen aus SiC/SiC-Verbundkeramik (Bild am Anfang dieses Artikels).
In der Entwicklung befindet sich noch die Anwendung dieses Gleitlagertyps in Turbopumpen, mit denen in Triebwerken der Raumfahrt flüssiger Sauerstoff (Liquid Oxygen = LOx, Siedepunkt: -183°C) gefördert wird. Die bisherigen Tests haben gezeigt:
- SiC und CVI-SiC/SiC sind mit LOx verträglich und reagieren auch unter verschärften Bedingungen nicht mit Sauerstoff (Zur Bestimmung der Selbstzündungstemperatur wird Pulver unter 20 bar reinem Sauerstoffgas nach der französischen Norm NF 29-763 bis auf 525°C erhitzt.).
- Reib-Verschleißversuche haben im Vergleich zu einer metallischen Standard-Paarung einen halbierten Reibkoeffizienten und einen auf ein Hundertstel reduzierten Verschleiß ergeben [10].
- Das mit LOx-Schmierung hydrostatisch ausgelegte Gleitlager hat einen Test einige Stunden bei 10.000 U/min mit unterschiedlichen Lagerlasten sowie 50 Start/Stopp-Übergänge unter Mischreibungsbedingungen praktisch verschleißfrei überstanden [11].
Der Vorteil dieser keramischen Lager mit Verbundkeramik im Vergleich zu Lagern mit herkömmlicher Keramik liegt in der stark erhöhten Zuverlässigkeit. Eine Beschädigung der Wellenschutzhülse führt nicht sofort zu einer Zersplitterung in mehrere größere und sehr harte Bruchstücke mit großen Folgeschäden für Pumpengehäuse und -rad, sondern sie bleibt örtlich begrenzt.
Sonstige Anwendungen und Entwicklungsansätze
Erwähnt werden können noch die folgenden Anwendungs- und Entwicklungsbeispiele:
- Schubsteuerklappen in Strahltriebwerken von Kampfflugzeugen [12].
- CVI-SiC/SiC-Platten mit dreidimensionaler Faserstruktur als Auskleidung heißer Bereiche von Fusionsreaktoren [13]. Durch die dreidimensionale Faserstruktur wird die Wärmeleitung senkrecht zur Plattenebene erhöht.
- Strahlruder ("Fins"), Flammhalter und Heißgasleitrohre in Überschallraketen [14].
- Bremsklötze zur Notbremsung schneller Aufzüge in Hochhäusern [14].
- Hochtemperatur-Wärmetauscher [14] mit den noch ähnlich wie bei Gasturbinen anstehenden Problemen der Heißgaskorrosion.
- Steife Strukturen für Präzisionsspiegel [14].
- Verkleidungselemente im Bereich Abgas führenden Rohre von Rennwagen der Formel 1.
Quellen
- ↑ M. Kuntz, "Ceramic Matrix Composites", cfi/Bericht der DKG, Band 49, Nr. 1, 1992, S. 18
- ↑ H. Pfeiffer: Ceramic Body Flap for X-38 and CRV. 2nd International Symposium on Atmospheric Re-entry Vehicles and Systems, Arcachon, Frankreich, März 2001
- ↑ H. Pfeiffer, K. Peetz: All-Ceramic Body Flap Qualified for Space Flight on the X-38. 53rd International Astronautical Congress, Houston, Texas, USA, Oktober 2002, Paper IAF-02-I.6.b.01
- ↑ H. Lange, M. Dogigli, M. Bickel: Ceramic Fasteners für High Temperature Applications. 5th International Conference on Joining: Ceramics, Glas and Metal, Jena, Mai 1997, DVS-Berichte Band 184, Deutscher Verlag für Schweißtechnik, S. 55, ISBN 3-87155-489-8
- ↑ M. Dogigli, H. Weihs, K. Wildenrotter, H. Lange: New High-Temperature Ceramic Bearing for Space Vehicles. 51st International Astronautical Congress, Rio de Janeiro, Brasilien, Oktober 2000, Paper IAF-00-I.3.04
- ↑ N. Miriyala, J. Kimmel, J. Price, H. Eaton, G. Linsey, E. Sun: The evaluation of CFCC Liners After Field Testing in a Gas Turbine - III. ASME Turbo Expo Land, Sea & Air, Amsterdam, June 2002, Paper GT-2002-30585
- ↑ K.L. More, P.F. Tortorelli, L.R. Walker, J.B. Kimmel, N. Miriyala, J.R. Price, H.E. Eaton, E. Y. Sun, G.D. Linsey: Evaluating Environmental Barrier Coatings on Ceramic Matrix Composites After Engine and Laboratory Exposures. ASME Turbo Expo Land, Sea & Air, Amsterdam, June 2002, Paper GT-2002-30630
- ↑ a b K. Gaffal, A.-K. Usbeck, W. Prechtl: Neue Werkstoffe ermöglichen innovative Pumpenkonzepte für die Speisewasserförderung in Kesselanlagen. VDI-Berichte Nr. 1331, VDI-Verlag, Düsseldorf, 1997, S. 275
- ↑ W. Kochanowski, P. Tillack: Neue Pumpenlagerwerkstoffe verhindern Schäden an Rohrgehäusepumpen. VDI-Berichte Nr. 1421, VDI-Verlag, Düsseldorf, 1998, S. 227
- ↑ J.L. Bozet, M. Nelis, M. Leuchs, M. Bickel: Tribology in Liquid Oxygen of SiC/SiC Ceramic Matrix Composites in Connection with the Design of Hydrostatic Bearing. Proceedings of the 9th European Space Mechanisms & Tribology Symposium (ESMAT), Liège, Belgien, September 2001, ESA Dokument SP-480, S. 35
- ↑ M. Bickel, M. Leuchs, H. Lange, M. Nelis, J.L. Bozet: Ceramic Journal Bearings in Cryogenic Turbo-Pumps. 4th International Conference on Launcher Technology - Space Launcher Liquid Propulsion, Liège, Belgien, Dezember 2002, Paper #129
- ↑ P. Boullon, G. Habarou, P.C. Spriet, J.L. Lecordix, G.C. Ojard, G.D. Linsey, D.T. Feindel: Characterization and Nozzle Test Experience of a Self Sealing Ceramic Matrix Composite for Gas Turbine Applications, ASME Turbo Expo Land, Sea & Air, Amsterdam, June 2002, paper GT-2002-30458
- ↑ B. Riccardi, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, R.H. Jones, L.L Snead: Issues and Advances in SiCf /SiC Composite development for Fusion Reactors. Journal of Nuclear Materials, Band 329-333, 2004, S. 56
- ↑ a b c d W. Krenkel: Anwendungspotenziale faserverstärkter C/C-SiC-Keramiken, in Vorlage:Lit
Literatur
- W. Krenkel (Hrsg.): Keramische Verbundwerkstoffe. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003, ISBN 3-527-30529-7
- J. Kriegesmann (Hrsg.): DKG - Technische Keramische Werkstoffe. Fachverlag Deutscher Wirtschaftsdienst, Köln, ISBN 3-87156-091-X
- W. J. Bartz (Hrsg.): Keramiklager, Werkstoffe - Gleit- und Wälzlager - Dichtungen. Band 12 der Reihe Handbuch der Tribologie und Schmierungstechnik, Expert Verlag, Renningen, 2003, ISBN 3-8169-2050-0