Jump to content

Topological divisor of zero

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, an element of a Banach algebra is called a topological divisor of zero if there exists a sequence of elements of such that

  1. The sequence converges to the zero element, but
  2. The sequence does not converge to the zero element.

If such a sequence exists, then one may assume that for all .

If is not commutative, then is called a "left" topological divisor of zero, and one may define "right" topological divisors of zero similarly.

Examples

  • If has a unit element, then the invertible elements of form an open subset of , while the non-invertible elements are the complementary closed subset. Any point on the boundary between these two sets is both a left and right topological divisor of zero.
  • In particular, any quasinilpotent element is a topological divisor of zero (e.g. the Volterra operator).
  • An operator on a Banach space , which is injective, not surjective, but whose image is dense in , is a left topological divisor of zero.

Generalization

The notion of a topological divisor of zero may be generalized to any topological algebra. If the algebra in question is not first-countable, one must substitute nets for the sequences used in the definition.

References

  • Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277. Chapter 10 Exercise 11.