Jump to content

Motivic L-function

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, motivic L-functions are a generalization of Hasse–Weil L-functions to general motives over global fields. The local L-factor at a finite place v is similarly given by the characteristic polynomial of a Frobenius element at v acting on the v-inertial invariants of the v-adic realization of the motive. For infinite places, Jean-Pierre Serre gave a recipe in (Serre 1970) for the so-called Gamma factors in terms of the Hodge realization of the motive. It is conjectured that, like other L-functions, that each motivic L-function can be analytically continued to a meromorphic function on the entire complex plane and satisfies a functional equation relating the L-function L(sM) of a motive M to L(1 − s, M), where M is the dual of the motive M.[1]

Examples

Basic examples include Artin L-functions and Hasse–Weil L-functions. It is also known (Scholl 1990), for example, that a motive can be attached to a newform (i.e. a primitive cusp form), hence their L-functions are motivic.

Conjectures

Several conjectures exist concerning motivic L-functions. It is believed that motivic L-functions should all arise as automorphic L-functions,[2] and hence should be part of the Selberg class. There are also conjectures concerning the values of these L-functions at integers generalizing those known for the Riemann zeta function, such as Deligne's conjecture on special values of L-functions, the Beilinson conjecture, and the Bloch–Kato conjecture (on special values of L-functions).

Notes

  1. ^ Another common normalization of the L-functions consists in shifting the one used here so that the functional equation relates a value at s with one at w + 1 − s, where w is the weight of the motive.
  2. ^ Langlands 1980

References

  • Deligne, Pierre (1979), "Valeurs de fonctions L et périodes d'intégrales" (PDF), in Borel, Armand; Casselman, William (eds.), Automorphic Forms, Representations, and L-Functions, Proceedings of the Symposium in Pure Mathematics (in French), vol. 33, Providence, RI: AMS, pp. 313–346, ISBN 0-8218-1437-0, MR 0546622, Zbl 0449.10022
  • Langlands, Robert P. (1980), "L-functions and automorphic representations", Proceedings of the International Congress of Mathematicians (Helsinki, 1978) (PDF), vol. 1, Helsinki: Academia Scientiarum Fennica, pp. 165–175, MR 0562605, archived from the original (PDF) on 2016-03-03, retrieved 2011-05-11 alternate URL
  • Scholl, Anthony (1990), "Motives for modular forms", Inventiones Mathematicae, 100 (2): 419–430, Bibcode:1990InMat.100..419S, doi:10.1007/BF01231194, MR 1047142, S2CID 17109327
  • Serre, Jean-Pierre (1970), "Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures)", Séminaire Delange-Pisot-Poitou, 11 (2 (1969–1970) exp. 19): 1–15