From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
In mathematics , the scale convolution of two functions
s
(
t
)
{\displaystyle s(t)}
and
r
(
t
)
{\displaystyle r(t)}
, also known as their logarithmic convolution or log-volution [ 1] is defined as the function[ 2]
s
∗
l
r
(
t
)
=
r
∗
l
s
(
t
)
=
∫
0
∞
s
(
t
a
)
r
(
a
)
d
a
a
{\displaystyle s*_{l}r(t)=r*_{l}s(t)=\int _{0}^{\infty }s\left({\frac {t}{a}}\right)r(a)\,{\frac {da}{a}}}
when this quantity exists.
Results
The logarithmic convolution can be related to the ordinary convolution by changing the variable from
t
{\displaystyle t}
to
v
=
log
t
{\displaystyle v=\log t}
:[ 2]
s
∗
l
r
(
t
)
=
∫
0
∞
s
(
t
a
)
r
(
a
)
d
a
a
=
∫
−
∞
∞
s
(
t
e
u
)
r
(
e
u
)
d
u
=
∫
−
∞
∞
s
(
e
log
t
−
u
)
r
(
e
u
)
d
u
.
{\displaystyle {\begin{aligned}s*_{l}r(t)&=\int _{0}^{\infty }s\left({\frac {t}{a}}\right)r(a)\,{\frac {da}{a}}\\&=\int _{-\infty }^{\infty }s\left({\frac {t}{e^{u}}}\right)r(e^{u})\,du\\&=\int _{-\infty }^{\infty }s\left(e^{\log t-u}\right)r(e^{u})\,du.\end{aligned}}}
Define
f
(
v
)
=
s
(
e
v
)
{\displaystyle f(v)=s(e^{v})}
and
g
(
v
)
=
r
(
e
v
)
{\displaystyle g(v)=r(e^{v})}
and let
v
=
log
t
{\displaystyle v=\log t}
, then
s
∗
l
r
(
v
)
=
f
∗
g
(
v
)
=
g
∗
f
(
v
)
=
r
∗
l
s
(
v
)
.
{\displaystyle s*_{l}r(v)=f*g(v)=g*f(v)=r*_{l}s(v).}
See also
References
^ Peter Buchen (2012). An Introduction to Exotic Option Pricing . Chapman and Hall/CRC Financial Mathematics Series. CRC Press. ISBN 9781420091021 .
^ a b "logarithmic convolution" . Planet Math . 22 March 2013. Retrieved 15 September 2024 .
External links
This article incorporates material from logarithmic convolution on PlanetMath , which is licensed under the Creative Commons Attribution/Share-Alike License .