Jump to content

Jackson q-Bessel function

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, a Jackson q-Bessel function (or basic Bessel function) is one of the three q-analogs of the Bessel function introduced by Jackson (1906a, 1906b, 1905a, 1905b). The third Jackson q-Bessel function is the same as the Hahn–Exton q-Bessel function.

Definition

The three Jackson q-Bessel functions are given in terms of the q-Pochhammer symbol and the basic hypergeometric function by

They can be reduced to the Bessel function by the continuous limit:

There is a connection formula between the first and second Jackson q-Bessel function (Gasper & Rahman (2004)):

For integer order, the q-Bessel functions satisfy

Properties

Negative Integer Order

By using the relations (Gasper & Rahman (2004)):

we obtain

Zeros

Hahn mentioned that has infinitely many real zeros (Hahn (1949)). Ismail proved that for all non-zero roots of are real (Ismail (1982)).

Ratio of q-Bessel Functions

The function is a completely monotonic function (Ismail (1982)).

Recurrence Relations

The first and second Jackson q-Bessel function have the following recurrence relations (see Ismail (1982) and Gasper & Rahman (2004)):

Inequalities

When , the second Jackson q-Bessel function satisfies: (see Zhang (2006).)

For , (see Koelink (1993).)

Generating Function

The following formulas are the q-analog of the generating function for the Bessel function (see Gasper & Rahman (2004)):

is the q-exponential function.

Alternative Representations

Integral Representations

The second Jackson q-Bessel function has the following integral representations (see Rahman (1987) and Ismail & Zhang (2018a)):

where is the q-Pochhammer symbol. This representation reduces to the integral representation of the Bessel function in the limit .

Hypergeometric Representations

The second Jackson q-Bessel function has the following hypergeometric representations (see Koelink (1993), Chen, Ismail, and Muttalib (1994)):

An asymptotic expansion can be obtained as an immediate consequence of the second formula.

For other hypergeometric representations, see Rahman (1987).

Modified q-Bessel Functions

The q-analog of the modified Bessel functions are defined with the Jackson q-Bessel function (Ismail (1981) and Olshanetsky & Rogov (1995)):

There is a connection formula between the modified q-Bessel functions:

For statistical applications, see Kemp (1997).

Recurrence Relations

By the recurrence relation of Jackson q-Bessel functions and the definition of modified q-Bessel functions, the following recurrence relation can be obtained ( also satisfies the same relation) (Ismail (1981)):

For other recurrence relations, see Olshanetsky & Rogov (1995).

Continued Fraction Representation

The ratio of modified q-Bessel functions form a continued fraction (Ismail (1981)):

Alternative Representations

Hypergeometric Representations

The function has the following representation (Ismail & Zhang (2018b)):

Integral Representations

The modified q-Bessel functions have the following integral representations (Ismail (1981)):

See also

References